Abstract:Electromyography (EMG) is a way of measuring the bioelectric activities that take place inside the muscles. EMG is usually performed to detect abnormalities within the nerves or muscles of a target area. The recent developments in the field of Machine Learning allow us to use EMG signals to teach machines the complex properties of human movements. Modern machines are capable of detecting numerous human activities and distinguishing among them solely based on the EMG signals produced by those activities. However, success in accomplishing this task mostly depends on the learning technique used by the machine to analyze EMG signals; and even the latest algorithms do not result in flawless classification. In this study, a novel classification method has been described employing a multichannel Convolutional Neural Network (CNN) that interprets surface EMG signals by the properties they exhibit in the power domain. The proposed method was tested on a well-established EMG dataset, and the result yields very high classification accuracy. This learning model will help researchers to develop prosthetic arms capable of detecting various hand gestures to mimic them afterwards.
Abstract:Human Activity Recognition (HAR) simply refers to the capacity of a machine to perceive human actions. HAR is a prominent application of advanced Machine Learning and Artificial Intelligence techniques that utilize computer vision to understand the semantic meanings of heterogeneous human actions. This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements. The primary challenge while working with HAR is to overcome the difficulties that come with the cyclostationary nature of the activity signals. This study proposes a HAR classification model based on a two-channel Convolutional Neural Network (CNN) that makes use of the frequency and power features of the collected human action signals. The model was tested on the UCI HAR dataset, which resulted in a 95.25% classification accuracy. This approach will help to conduct further researches on the recognition of human activities based on their biomedical signals.
Abstract:Diabetic retinopathy (DR) is the primary cause of vision loss among grownup people around the world. In four out of five cases having diabetes for a prolonged period leads to DR. If detected early, more than 90 percent of the new DR occurrences can be prevented from turning into blindness through proper treatment. Despite having multiple treatment procedures available that are well capable to deal with DR, the negligence and failure of early detection cost most of the DR patients their precious eyesight. The recent developments in the field of Digital Image Processing (DIP) and Machine Learning (ML) have paved the way to use machines in this regard. The contemporary technologies allow us to develop devices capable of automatically detecting the condition of a persons eyes based on their retinal images. However, in practice, several factors hinder the quality of the captured images and impede the detection outcome. In this study, a novel early blind detection method has been proposed based on the color information extracted from retinal images using an ensemble learning algorithm. The method has been tested on a set of retinal images collected from people living in the rural areas of South Asia, which resulted in a 91 percent classification accuracy.