Abstract:Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
Abstract:Human Activity Recognition (HAR) simply refers to the capacity of a machine to perceive human actions. HAR is a prominent application of advanced Machine Learning and Artificial Intelligence techniques that utilize computer vision to understand the semantic meanings of heterogeneous human actions. This paper describes a supervised learning method that can distinguish human actions based on data collected from practical human movements. The primary challenge while working with HAR is to overcome the difficulties that come with the cyclostationary nature of the activity signals. This study proposes a HAR classification model based on a two-channel Convolutional Neural Network (CNN) that makes use of the frequency and power features of the collected human action signals. The model was tested on the UCI HAR dataset, which resulted in a 95.25% classification accuracy. This approach will help to conduct further researches on the recognition of human activities based on their biomedical signals.
Abstract:Diabetic retinopathy (DR) is the primary cause of vision loss among grownup people around the world. In four out of five cases having diabetes for a prolonged period leads to DR. If detected early, more than 90 percent of the new DR occurrences can be prevented from turning into blindness through proper treatment. Despite having multiple treatment procedures available that are well capable to deal with DR, the negligence and failure of early detection cost most of the DR patients their precious eyesight. The recent developments in the field of Digital Image Processing (DIP) and Machine Learning (ML) have paved the way to use machines in this regard. The contemporary technologies allow us to develop devices capable of automatically detecting the condition of a persons eyes based on their retinal images. However, in practice, several factors hinder the quality of the captured images and impede the detection outcome. In this study, a novel early blind detection method has been proposed based on the color information extracted from retinal images using an ensemble learning algorithm. The method has been tested on a set of retinal images collected from people living in the rural areas of South Asia, which resulted in a 91 percent classification accuracy.