Abstract:Accurate and efficient medical image segmentation is crucial for advancing clinical diagnostics and surgical planning, yet remains a complex challenge due to the variability in anatomical structures and the demand for low-complexity models. In this paper, we introduced Med-2D SegNet, a novel and highly efficient segmentation architecture that delivers outstanding accuracy while maintaining a minimal computational footprint. Med-2D SegNet achieves state-of-the-art performance across multiple benchmark datasets, including KVASIR-SEG, PH2, EndoVis, and GLAS, with an average Dice similarity coefficient (DSC) of 89.77% across 20 diverse datasets. Central to its success is the compact Med Block, a specialized encoder design that incorporates dimension expansion and parameter reduction, enabling precise feature extraction while keeping model parameters to a low count of just 2.07 million. Med-2D SegNet excels in cross-dataset generalization, particularly in polyp segmentation, where it was trained on KVASIR-SEG and showed strong performance on unseen datasets, demonstrating its robustness in zero-shot learning scenarios, even though we acknowledge that further improvements are possible. With top-tier performance in both binary and multi-class segmentation, Med-2D SegNet redefines the balance between accuracy and efficiency, setting a new benchmark for medical image analysis. This work paves the way for developing accessible, high-performance diagnostic tools suitable for clinical environments and resource-constrained settings, making it a step forward in the democratization of advanced medical technology.
Abstract:Intrusion detection system (IDS) is a piece of hardware or software that looks for malicious activity or policy violations in a network. It looks for malicious activity or security flaws on a network or system. IDS protects hosts or networks by looking for indications of known attacks or deviations from normal behavior (Network-based intrusion detection system, or NIDS for short). Due to the rapidly increasing amount of network data, traditional intrusion detection systems (IDSs) are far from being able to quickly and efficiently identify complex and varied network attacks, especially those linked to low-frequency attacks. The SCGNet (Stacked Convolution with Gated Recurrent Unit Network) is a novel deep learning architecture that we propose in this study. It exhibits promising results on the NSL-KDD dataset in both task, network attack detection, and attack type classification with 99.76% and 98.92% accuracy, respectively. We have also introduced a general data preprocessing pipeline that is easily applicable to other similar datasets. We have also experimented with conventional machine-learning techniques to evaluate the performance of the data processing pipeline.
Abstract:Yoga has recently become an essential aspect of human existence for maintaining a healthy body and mind. People find it tough to devote time to the gym for workouts as their lives get more hectic and they work from home. This kind of human pose estimation is one of the notable problems as it has to deal with locating body key points or joints. Yoga-82, a benchmark dataset for large-scale yoga pose recognition with 82 classes, has challenging positions that could make precise annotations impossible. We have used VGG-16, ResNet-50, ResNet-101, and DenseNet-121 and finetuned them in different ways to get better results. We also used Neural Architecture Search to add more layers on top of this pre-trained architecture. The experimental result shows the best performance of DenseNet-121 having the top-1 accuracy of 85% and top-5 accuracy of 96% outperforming the current state-of-the-art result.