Abstract:Multi-channel time-series datasets are popular in the context of human activity recognition (HAR). On-body device (OBD) recordings of human movements are often preferred for HAR applications not only for their reliability but as an approach for identity protection, e.g., in industrial settings. Contradictory, the gait activity is a biometric, as the cyclic movement is distinctive and collectable. In addition, the gait cycle has proven to contain soft-biometric information of human groups, such as age and height. Though general human movements have not been considered a biometric, they might contain identity information. This work investigates person and soft-biometrics identification from OBD recordings of humans performing different activities using deep architectures. Furthermore, we propose the use of attribute representation for soft-biometric identification. We evaluate the method on four datasets of multi-channel time-series HAR, measuring the performance of a person and soft-biometrics identification and its relation concerning performed activities. We find that person identification is not limited to gait activity. The impact of activities on the identification performance was found to be training and dataset specific. Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
Abstract:When creating multi-channel time-series datasets for Human Activity Recognition (HAR), researchers are faced with the issue of subject selection criteria. It is unknown what physical characteristics and/or soft-biometrics, such as age, height, and weight, need to be taken into account to train a classifier to achieve robustness towards heterogeneous populations in the training and testing data. This contribution statistically curates the training data to assess to what degree the physical characteristics of humans influence HAR performance. We evaluate the performance of a state-of-the-art convolutional neural network on two HAR datasets that vary in the sensors, activities, and recording for time-series HAR. The training data is intentionally biased with respect to human characteristics to determine the features that impact motion behaviour. The evaluations brought forth the impact of the subjects' characteristics on HAR. Thus, providing insights regarding the robustness of the classifier with respect to heterogeneous populations. The study is a step forward in the direction of fair and trustworthy artificial intelligence by attempting to quantify representation bias in multi-channel time series HAR data.