Abstract:Variational methods are employed in situations where exact Bayesian inference becomes intractable due to the difficulty in performing certain integrals. Typically, variational methods postulate a tractable posterior and formulate a lower bound on the desired integral to be approximated, e.g. marginal likelihood. The lower bound is then optimised with respect to its free parameters, the so called variational parameters. However, this is not always possible as for certain integrals it is very challenging (or tedious) to come up with a suitable lower bound. Here we propose a simple scheme that overcomes some of the awkward cases where the usual variational treatment becomes difficult. The scheme relies on a rewriting of the lower bound on the model log-likelihood. We demonstrate the proposed scheme on a number of synthetic and real examples, as well as on a real geophysical model for which the standard variational approaches are inapplicable.
Abstract:The Laplace approximation has been one of the workhorses of Bayesian inference. It often delivers good approximations in practice despite the fact that it does not strictly take into account where the volume of posterior density lies. Variational approaches avoid this issue by explicitly minimising the Kullback-Leibler divergence DKL between a postulated posterior and the true (unnormalised) logarithmic posterior. However, they rely on a closed form DKL in order to update the variational parameters. To address this, stochastic versions of variational inference have been devised that approximate the intractable DKL with a Monte Carlo average. This approximation allows calculating gradients with respect to the variational parameters. However, variational methods often postulate a factorised Gaussian approximating posterior. In doing so, they sacrifice a-posteriori correlations. In this work, we propose a method that combines the Laplace approximation with the variational approach. The advantages are that we maintain: applicability on non-conjugate models, posterior correlations and a reduced number of free variational parameters. Numerical experiments demonstrate improvement over the Laplace approximation and variational inference with factorised Gaussian posteriors.
Abstract:We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the readout weight representations. The crux of the work is to equip the autoencoder with a loss function that correctly interprets the reconstructed readout weights by associating them with a reconstruction error measured in the data space of sequences. This essentially amounts to measuring the predictive performance that the reconstructed readout weights exhibit on their corresponding sequences when plugged back into the echo state network with the same fixed reservoir. We demonstrate that the proposed visualisation framework can deal both with real valued sequences as well as binary sequences. We derive magnification factors in order to analyse distance preservations and distortions in the visualisation space. The versatility and advantages of the proposed method are demonstrated on datasets of time series that originate from diverse domains.
Abstract:We present an algorithm for the visualisation of time series. To that end we employ echo state networks to convert time series into a suitable vector representation which is capable of capturing the latent dynamics of the time series. Subsequently, the obtained vector representations are put through an autoencoder and the visualisation is constructed using the activations of the bottleneck. The crux of the work lies with defining an objective function that quantifies the reconstruction error of these representations in a principled manner. We demonstrate the method on synthetic and real data.