Abstract:Simulations are the best approximation to experimental laboratories in astrophysics and cosmology. However, the complexity, richness, and large size of their outputs severely limit the interpretability of their predictions. We describe a new, unbiased, and machine learning based approach to obtaining useful scientific insights from a broad range of simulations. The method can be used on today's largest simulations and will be essential to solve the extreme data exploration and analysis challenges posed by the Exascale era. Furthermore, this concept is so flexible, that it will also enable explorative access to observed data. Our concept is based on applying nonlinear dimensionality reduction to learn compact representations of the data in a low-dimensional space. The simulation data is projected onto this space for interactive inspection, visual interpretation, sample selection, and local analysis. We present a prototype using a rotational invariant hyperspherical variational convolutional autoencoder, utilizing a power distribution in the latent space, and trained on galaxies from IllustrisTNG simulation. Thereby, we obtain a natural Hubble tuning fork like similarity space that can be visualized interactively on the surface of a sphere by exploiting the power of HiPS tilings in Aladin Lite.
Abstract:Ensemble weather predictions typically show systematic errors that have to be corrected via post-processing. Even state-of-the-art post-processing methods based on neural networks often solely rely on location-specific predictors that require an interpolation of the physical weather model's spatial forecast fields to the target locations. However, potentially useful predictability information contained in large-scale spatial structures within the input fields is potentially lost in this interpolation step. Therefore, we propose the use of convolutional autoencoders to learn compact representations of spatial input fields which can then be used to augment location-specific information as additional inputs to post-processing models. The benefits of including this spatial information is demonstrated in a case study of 2-m temperature forecasts at surface stations in Germany.
Abstract:We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the readout weight representations. The crux of the work is to equip the autoencoder with a loss function that correctly interprets the reconstructed readout weights by associating them with a reconstruction error measured in the data space of sequences. This essentially amounts to measuring the predictive performance that the reconstructed readout weights exhibit on their corresponding sequences when plugged back into the echo state network with the same fixed reservoir. We demonstrate that the proposed visualisation framework can deal both with real valued sequences as well as binary sequences. We derive magnification factors in order to analyse distance preservations and distortions in the visualisation space. The versatility and advantages of the proposed method are demonstrated on datasets of time series that originate from diverse domains.