Abstract:We consider the problem of contextual kernel bandits with stochastic contexts, where the underlying reward function belongs to a known Reproducing Kernel Hilbert Space (RKHS). We study this problem under the additional constraint of joint differential privacy, where the agents needs to ensure that the sequence of query points is differentially private with respect to both the sequence of contexts and rewards. We propose a novel algorithm that improves upon the state of the art and achieves an error rate of $\mathcal{O}\left(\sqrt{\frac{\gamma_T}{T}} + \frac{\gamma_T}{T \varepsilon}\right)$ after $T$ queries for a large class of kernel families, where $\gamma_T$ represents the effective dimensionality of the kernel and $\varepsilon > 0$ is the privacy parameter. Our results are based on a novel estimator for the reward function that simultaneously enjoys high utility along with a low-sensitivity to observed rewards and contexts, which is crucial to obtain an order optimal learning performance with improved dependence on the privacy parameter.
Abstract:We consider the problem of differentially private stochastic convex optimization (DP-SCO) in a distributed setting with $M$ clients, where each of them has a local dataset of $N$ i.i.d. data samples from an underlying data distribution. The objective is to design an algorithm to minimize a convex population loss using a collaborative effort across $M$ clients, while ensuring the privacy of the local datasets. In this work, we investigate the accuracy-communication-privacy trade-off for this problem. We establish matching converse and achievability results using a novel lower bound and a new algorithm for distributed DP-SCO based on Vaidya's plane cutting method. Thus, our results provide a complete characterization of the accuracy-communication-privacy trade-off for DP-SCO in the distributed setting.
Abstract:We consider distributed kernel bandits where $N$ agents aim to collaboratively maximize an unknown reward function that lies in a reproducing kernel Hilbert space. Each agent sequentially queries the function to obtain noisy observations at the query points. Agents can share information through a central server, with the objective of minimizing regret that is accumulating over time $T$ and aggregating over agents. We develop the first algorithm that achieves the optimal regret order (as defined by centralized learning) with a communication cost that is sublinear in both $N$ and $T$. The key features of the proposed algorithm are the uniform exploration at the local agents and shared randomness with the central server. Working together with the sparse approximation of the GP model, these two key components make it possible to preserve the learning rate of the centralized setting at a diminishing rate of communication.