Abstract:The workshop 'AI-based Planning for Cyber-Physical Systems', which took place on February 26, 2024, as part of the 38th Annual AAAI Conference on Artificial Intelligence in Vancouver, Canada, brought together researchers to discuss recent advances in AI planning methods for Cyber-Physical Systems (CPS). CPS pose a major challenge due to their complexity and data-intensive nature, which often exceeds the capabilities of traditional planning algorithms. The workshop highlighted new approaches such as neuro-symbolic architectures, large language models (LLMs), deep reinforcement learning and advances in symbolic planning. These techniques are promising when it comes to managing the complexity of CPS and have potential for real-world applications.
Abstract:Manufacturing companies face challenges when it comes to quickly adapting their production control to fluctuating demands or changing requirements. Control approaches that encapsulate production functions as services have shown to be promising in order to increase the flexibility of Cyber-Physical Production Systems. But an existing challenge of such approaches is finding a production plan based on provided functionalities for a demanded product, especially when there is no direct (i.e., syntactic) match between demanded and provided functions. While there is a variety of approaches to production planning, flexible production poses specific requirements that are not covered by existing research. In this contribution, we first capture these requirements for flexible production environments. Afterwards, an overview of current Artificial Intelligence approaches that can be utilized in order to overcome the aforementioned challenges is given. For this purpose, we focus on planning algorithms, but also consider models of production systems that can act as inputs to these algorithms. Approaches from both symbolic AI planning as well as approaches based on Machine Learning are discussed and eventually compared against the requirements. Based on this comparison, a research agenda is derived.