Abstract:In this paper, we propose a novel learning based method for automated segmentation of brain tumor in multimodal MRI images, which incorporates two sets of machine -learned and hand crafted features. Fully convolutional networks (FCN) forms the machine learned features and texton based features are considered as hand-crafted features. Random forest (RF) is used to classify the MRI image voxels into normal brain tissues and different parts of tumors, i.e. edema, necrosis and enhancing tumor. The method was evaluated on BRATS 2017 challenge dataset. The results show that the proposed method provides promising segmentations. The mean Dice overlap measure for automatic brain tumor segmentation against ground truth is 0.86, 0.78 and 0.66 for whole tumor, core and enhancing tumor, respectively.
Abstract:Individual pig detection and tracking is an important requirement in many video-based pig monitoring applications. However, it still remains a challenging task in complex scenes, due to problems of light fluctuation, similar appearances of pigs, shape deformations and occlusions. To tackle these problems, we propose a robust real time multiple pig detection and tracking method which does not require manual marking or physical identification of the pigs, and works under both daylight and infrared light conditions. Our method couples a CNN-based detector and a correlation filter-based tracker via a novel hierarchical data association algorithm. The detector gains the best accuracy/speed trade-off by using the features derived from multiple layers at different scales in a one-stage prediction network. We define a tag-box for each pig as the tracking target, and the multiple object tracking is conducted in a key-points tracking manner using learned correlation filters. Under challenging conditions, the tracking failures are modelled based on the relations between responses of detector and tracker, and the data association algorithm allows the detection hypotheses to be refined, meanwhile the drifted tracks can be corrected by probing the tracking failures followed by the re-initialization of tracking. As a result, the optimal tracklets can sequentially grow with on-line refined detections, and tracking fragments are correctly integrated into respective tracks while keeping the original identifications. Experiments with a dataset captured from a commercial farm show that our method can robustly detect and track multiple pigs under challenging conditions. The promising performance of the proposed method also demonstrates a feasibility of long-term individual pig tracking in a complex environment and thus promises a commercial potential.
Abstract:In this paper, we propose a novel learning based method for automated segmenta-tion of brain tumor in multimodal MRI images. The machine learned features from fully convolutional neural network (FCN) and hand-designed texton fea-tures are used to classify the MRI image voxels. The score map with pixel-wise predictions is used as a feature map which is learned from multimodal MRI train-ing dataset using the FCN. The learned features are then applied to random for-ests to classify each MRI image voxel into normal brain tissues and different parts of tumor. The method was evaluated on BRATS 2013 challenge dataset. The results show that the application of the random forest classifier to multimodal MRI images using machine-learned features based on FCN and hand-designed features based on textons provides promising segmentations. The Dice overlap measure for automatic brain tumor segmentation against ground truth is 0.88, 080 and 0.73 for complete tumor, core and enhancing tumor, respectively.