Abstract:Tuning machine parameters of particle accelerators is a repetitive and time-consuming task, that is challenging to automate. While many off-the-shelf optimization algorithms are available, in practice their use is limited because most methods do not account for safety-critical constraints that apply to each iteration, including loss signals or step-size limitations. One notable exception is safe Bayesian optimization, which is a data-driven tuning approach for global optimization with noisy feedback. We propose and evaluate a step size-limited variant of safe Bayesian optimization on two research faculties of the Paul Scherrer Institut (PSI): a) the Swiss Free Electron Laser (SwissFEL) and b) the High-Intensity Proton Accelerator (HIPA). We report promising experimental results on both machines, tuning up to 16 parameters subject to more than 200 constraints.
Abstract:Bayesian optimization is known to be difficult to scale to high dimensions, because the acquisition step requires solving a non-convex optimization problem in the same search space. In order to scale the method and keep its benefits, we propose an algorithm (LineBO) that restricts the problem to a sequence of iteratively chosen one-dimensional sub-problems. We show that our algorithm converges globally and obtains a fast local rate when the function is strongly convex. Further, if the objective has an invariant subspace, our method automatically adapts to the effective dimension without changing the algorithm. Our method scales well to high dimensions and makes use of a global Gaussian process model. When combined with the SafeOpt algorithm to solve the sub-problems, we obtain the first safe Bayesian optimization algorithm with theoretical guarantees applicable in high-dimensional settings. We evaluate our method on multiple synthetic benchmarks, where we obtain competitive performance. Further, we deploy our algorithm to optimize the beam intensity of the Swiss Free Electron Laser with up to 40 parameters while satisfying safe operation constraints.