Abstract:In this paper, we propose a method to partially mimic natural intelligence for the problem of lifelong learning representations that are compatible. We take the perspective of a learning agent that is interested in recognizing object instances in an open dynamic universe in a way in which any update to its internal feature representation does not render the features in the gallery unusable for visual search. We refer to this learning problem as Compatible Lifelong Learning Representations (CL2R) as it considers compatible representation learning within the lifelong learning paradigm. We identify stationarity as the property that the feature representation is required to hold to achieve compatibility and propose a novel training procedure that encourages local and global stationarity on the learned representation. Due to stationarity, the statistical properties of the learned features do not change over time, making them interoperable with previously learned features. Extensive experiments on standard benchmark datasets show that our CL2R training procedure outperforms alternative baselines and state-of-the-art methods. We also provide novel metrics to specifically evaluate compatible representation learning under catastrophic forgetting in various sequential learning tasks. Code at https://github.com/NiccoBiondi/CompatibleLifelongRepresentation.
Abstract:In this paper, we propose a novel method to learn internal feature representation models that are \textit{compatible} with previously learned ones. Compatible features enable for direct comparison of old and new learned features, allowing them to be used interchangeably over time. This eliminates the need for visual search systems to extract new features for all previously seen images in the gallery-set when sequentially upgrading the representation model. Extracting new features is typically quite expensive or infeasible in the case of very large gallery-sets and/or real time systems (i.e., face-recognition systems, social networks, life-long learning systems, robotics and surveillance systems). Our approach, called Compatible Representations via Stationarity (CoReS), achieves compatibility by encouraging stationarity to the learned representation model without relying on previously learned models. Stationarity allows features' statistical properties not to change under time shift so that the current learned features are inter-operable with the old ones. We evaluate single and sequential multi-model upgrading in growing large-scale training datasets and we show that our method improves the state-of-the-art in achieving compatible features by a large margin. In particular, upgrading ten times with training data taken from CASIA-WebFace and evaluating in Labeled Face in the Wild (LFW), we obtain a 49\% increase in measuring the average number of times compatibility is achieved, which is a 544\% relative improvement over previous state-of-the-art.