Abstract:Most of the previous approaches to Time Series Classification (TSC) highlight the significance of receptive fields and frequencies while overlooking the time resolution. Hence, unavoidably suffered from scalability issues as they integrated an extensive range of receptive fields into classification models. Other methods, while having a better adaptation for large datasets, require manual design and yet not being able to reach the optimal architecture due to the uniqueness of each dataset. We overcome these challenges by proposing a novel multi-scale search space and a framework for Neural architecture search (NAS), which addresses both the problem of frequency and time resolution, discovering the suitable scale for a specific dataset. We further show that our model can serve as a backbone to employ a powerful Transformer module with both untrained and pre-trained weights. Our search space reaches the state-of-the-art performance on four datasets on four different domains while introducing more than ten highly fine-tuned models for each data.
Abstract:This work discusses the use of contrastive learning and deep learning for diagnosing cardiovascular diseases from electrocardiography (ECG) signals. While the ECG signals usually contain 12 leads (channels), many healthcare facilities and devices lack access to all these 12 leads. This raises the problem of how to use only fewer ECG leads to produce meaningful diagnoses with high performance. We introduce a simple experiment to test whether contrastive learning can be applied to this task. More specifically, we added the similarity between the embedding vectors when the 12 leads signal and the fewer leads ECG signal to the loss function to bring these representations closer together. Despite its simplicity, this has been shown to have improved the performance of diagnosing with all lead combinations, proving the potential of contrastive learning on this task.