Abstract:In recent years, transformer architecture has been a dominating paradigm in many applications, including affective computing. In this report, we propose our transformer-based model to handle Emotion Classification Task in the 5th Affective Behavior Analysis In-the-wild Competition. By leveraging the attentive model and the synthetic dataset, we attain a score of 0.4775 on the validation set of Aff-Wild2, the dataset provided by the organizer.
Abstract:The ACII Affective Vocal Bursts (A-VB) competition introduces a new topic in affective computing, which is understanding emotional expression using the non-verbal sound of humans. We are familiar with emotion recognition via verbal vocal or facial expression. However, the vocal bursts such as laughs, cries, and signs, are not exploited even though they are very informative for behavior analysis. The A-VB competition comprises four tasks that explore non-verbal information in different spaces. This technical report describes the method and the result of SclabCNU Team for the tasks of the challenge. We achieved promising results compared to the baseline model provided by the organizers.
Abstract:Facial behavior analysis is a broad topic with various categories such as facial emotion recognition, age and gender recognition, ... Many studies focus on individual tasks while the multi-task learning approach is still open and requires more research. In this paper, we present our solution and experiment result for the Multi-Task Learning challenge of the Affective Behavior Analysis in-the-wild competition. The challenge is a combination of three tasks: action unit detection, facial expression recognition and valance-arousal estimation. To address this challenge, we introduce a cross-attentive module to improve multi-task learning performance. Additionally, a facial graph is applied to capture the association among action units. As a result, we achieve the evaluation measure of 1.24 on the validation data provided by the organizers, which is better than the baseline result of 0.30.