Abstract:In continuation of an earlier study, we explore a Neymann-Pearson hypothesis testing scenario where, under the null hypothesis ($\cal{H}_0$), the received signal is a white noise process $N_t$, which is not Gaussian in general, and under the alternative hypothesis ($\cal{H}_1$), the received signal comprises a deterministic transmitted signal $s_t$ corrupted by additive white noise, the sum of $N_t$ and another noise process originating from the transmitter, denoted as $Z_t$, which is not necessarily Gaussian either. Our approach focuses on detectors that are based on the correlation and energy of the received signal, which are motivated by implementation simplicity. We optimize the detector parameters to achieve the best trade-off between missed-detection and false-alarm error exponents. First, we optimize the detectors for a given signal, resulting in a non-linear relation between the signal and correlator weights to be optimized. Subsequently, we optimize the transmitted signal and the detector parameters jointly, revealing that the optimal signal is a balanced ternary signal and the correlator has at most three different coefficients, thus facilitating a computationally feasible solution.
Abstract:The problem of transmitting a parameter value over an additive white Gaussian noise (AWGN) channel is considered, where, in addition to the transmitter and the receiver, there is a helper that observes the noise non-causally and provides a description of limited rate $R_\mathrm{h}$ to the transmitter and/or the receiver. We derive upper and lower bounds on the optimal achievable $\alpha$-th moment of the estimation error and show that they coincide for small values of $\alpha$ and for low SNR values. The upper bound relies on a recently proposed channel-coding scheme that effectively conveys $R_\mathrm{h}$ bits essentially error-free and the rest of the rate - over the same AWGN channel without help, with the error-free bits allocated to the most significant bits of the quantized parameter. We then concentrate on the setting with a total transmit energy constraint, for which we derive achievability results for both channel coding and parameter modulation for several scenarios: when the helper assists only the transmitter or only the receiver and knows the noise, and when the helper assists the transmitter and/or the receiver and knows both the noise and the message. In particular, for the message-informed helper that assists both the receiver and the transmitter, it is shown that the error probability in the channel-coding task decays doubly exponentially. Finally, we translate these results to those for continuous-time power-limited AWGN channels with unconstrained bandwidth. As a byproduct, we show that the capacity with a message-informed helper that is available only at the transmitter can exceed the capacity of the same scenario when the helper knows only the noise but not the message.
Abstract:We consider the problem of sequential decision making on random fields corrupted by noise. In this scenario, the decision maker observes a noisy version of the data, yet judged with respect to the clean data. In particular, we first consider the problem of sequentially scanning and filtering noisy random fields. In this case, the sequential filter is given the freedom to choose the path over which it traverses the random field (e.g., noisy image or video sequence), thus it is natural to ask what is the best achievable performance and how sensitive this performance is to the choice of the scan. We formally define the problem of scanning and filtering, derive a bound on the best achievable performance and quantify the excess loss occurring when non-optimal scanners are used, compared to optimal scanning and filtering. We then discuss the problem of sequential scanning and prediction of noisy random fields. This setting is a natural model for applications such as restoration and coding of noisy images. We formally define the problem of scanning and prediction of a noisy multidimensional array and relate the optimal performance to the clean scandictability defined by Merhav and Weissman. Moreover, bounds on the excess loss due to sub-optimal scans are derived, and a universal prediction algorithm is suggested. This paper is the second part of a two-part paper. The first paper dealt with sequential decision making on noiseless data arrays, namely, when the decision maker is judged with respect to the same data array it observes.
Abstract:We investigate the problem of scanning and prediction ("scandiction", for short) of multidimensional data arrays. This problem arises in several aspects of image and video processing, such as predictive coding, for example, where an image is compressed by coding the error sequence resulting from scandicting it. Thus, it is natural to ask what is the optimal method to scan and predict a given image, what is the resulting minimum prediction loss, and whether there exist specific scandiction schemes which are universal in some sense. Specifically, we investigate the following problems: First, modeling the data array as a random field, we wish to examine whether there exists a scandiction scheme which is independent of the field's distribution, yet asymptotically achieves the same performance as if this distribution was known. This question is answered in the affirmative for the set of all spatially stationary random fields and under mild conditions on the loss function. We then discuss the scenario where a non-optimal scanning order is used, yet accompanied by an optimal predictor, and derive bounds on the excess loss compared to optimal scanning and prediction. This paper is the first part of a two-part paper on sequential decision making for multi-dimensional data. It deals with clean, noiseless data arrays. The second part deals with noisy data arrays, namely, with the case where the decision maker observes only a noisy version of the data, yet it is judged with respect to the original, clean data.