Abstract:Detecting and normalizing temporal expressions is an essential step for many NLP tasks. While a variety of methods have been proposed for detection, best normalization approaches rely on hand-crafted rules. Furthermore, most of them have been designed only for English. In this paper we present a modular multilingual temporal processing system combining a fine-tuned Masked Language Model for detection, and a grammar-based normalizer. We experiment in Spanish and English and compare with HeidelTime, the state-of-the-art in multilingual temporal processing. We obtain best results in gold timex normalization, timex detection and type recognition, and competitive performance in the combined TempEval-3 relaxed value metric. A detailed error analysis shows that detecting only those timexes for which it is feasible to provide a normalization is highly beneficial in this last metric. This raises the question of which is the best strategy for timex processing, namely, leaving undetected those timexes for which is not easy to provide normalization rules or aiming for high coverage.
Abstract:Parliamentary transcripts provide a valuable resource to understand the reality and know about the most important facts that occur over time in our societies. Furthermore, the political debates captured in these transcripts facilitate research on political discourse from a computational social science perspective. In this paper we release the first version of a newly compiled corpus from Basque parliamentary transcripts. The corpus is characterized by heavy Basque-Spanish code-switching, and represents an interesting resource to study political discourse in contrasting languages such as Basque and Spanish. We enrich the corpus with metadata related to relevant attributes of the speakers and speeches (language, gender, party...) and process the text to obtain named entities and lemmas. The obtained metadata is then used to perform a detailed corpus analysis which provides interesting insights about the language use of the Basque political representatives across time, parties and gender.