Abstract:Linear Discriminant Analysis (LDA) is commonly used for dimensionality reduction in pattern recognition and statistics. It is a supervised method that aims to find the most discriminant space of reduced dimension that can be further used for classification. In this work, we present a Grassmann Iterative LDA method (GILDA) that is based on Proxy Matrix Optimization (PMO). PMO makes use of automatic differentiation and stochastic gradient descent (SGD) on the Grassmann manifold to arrive at the optimal projection matrix. Our results show that GILDAoutperforms the prevailing manifold optimization method.
Abstract:Synthetic Aperture Radar (SAR) imagery has diverse applications in land and marine surveillance. Unlike electro-optical (EO) systems, these systems are not affected by weather conditions and can be used in the day and night times. With the growing importance of SAR imagery, it would be desirable if models trained on widely available EO datasets can also be used for SAR images. In this work, we consider transfer learning to leverage deep features from a network trained on an EO ships dataset and generate predictions on SAR imagery. Furthermore, by exploring the network activations in the form of class-activation maps (CAMs), we visualize the transfer learning process to SAR imagery and gain insight on how a deep network interprets a new modality.