Abstract:Coherent measurement of quantum signals used for continuous-variable (CV) quantum key distribution (QKD) across satellite-to-ground channels requires compensation of phase wavefront distortions caused by atmospheric turbulence. One compensation technique involves multiplexing classical reference pulses (RPs) and the quantum signal, with direct phase measurements on the RPs then used to modulate a real local oscillator (RLO) on the ground - a solution that also removes some known attacks on CV-QKD. However, this is a cumbersome task in practice - requiring substantial complexity in equipment requirements and deployment. As an alternative to this traditional practice, here we introduce a new method for estimating phase corrections for an RLO by using only intensity measurements from RPs as input to a convolutional neural network, mitigating completely the necessity to measure phase wavefronts directly. Conventional wisdom dictates such an approach would likely be fruitless. However, we show that the phase correction accuracy needed to provide for non-zero secure key rates through satellite-to-ground channels is achieved by our intensity-only measurements. Our work shows, for the first time, how artificial intelligence algorithms can replace phase-measuring equipment in the context of CV-QKD delivered from space, thereby delivering an alternate deployment paradigm for this global quantum-communication application.
Abstract:The use of the `ship as a wave buoy analogy' (SAWB) provides a novel means to estimate sea states, where relationships are established between causal wave properties and vessel motion response information. This study focuses on a model-free machine learning approach to SAWB-based sea state estimation (SSE), using neural networks (NNs) to map vessel response spectral data to statistical wave properties. Results showed a strong correlation between heave responses and significant wave height estimates, whilst the accuracy of mean wave period and wave heading predictions were observed to improve considerably when data from multiple vessel degrees of freedom (DOFs) was utilized. Overall, 3-DOF (heave, pitch and roll) NNs for SSE were shown to perform well when compared to existing SSE approaches that use similar simulation setups. Given the information-dense statistical representation of vessel motion responses in spectral form, as well as the ability of NNs to effectively model complex relationships between variables, the designed SSE method shows promise for future adaptation to mobile SSE systems using the SAWB approach.