Abstract:This paper presents a local energy distribution based hyperparameter determination for stochastic simulated annealing (SSA). SSA is capable of solving combinatorial optimization problems faster than typical simulated annealing (SA), but requires a time-consuming hyperparameter search. The proposed method determines hyperparameters based on the local energy distributions of spins (probabilistic bits). The spin is a basic computing element of SSA and is graphically connected to other spins with its weights. The distribution of the local energy can be estimated based on the central limit theorem (CLT). The CLT-based normal distribution is used to determine the hyperparameters, which reduces the time complexity for hyperparameter search from O(n^3) of the conventional method to O(1). The performance of SSA with the determined hyperparameters is evaluated on the Gset and K2000 benchmarks for maximum-cut problems. The results show that the proposed method achieves mean cut values of approximately 98% of the best-known cut values.
Abstract:The hardware implementation of deep neural networks (DNNs) has recently received tremendous attention: many applications in fact require high-speed operations that suit a hardware implementation. However, numerous elements and complex interconnections are usually required, leading to a large area occupation and copious power consumption. Stochastic computing has shown promising results for low-power area-efficient hardware implementations, even though existing stochastic algorithms require long streams that cause long latencies. In this paper, we propose an integer form of stochastic computation and introduce some elementary circuits. We then propose an efficient implementation of a DNN based on integral stochastic computing. The proposed architecture has been implemented on a Virtex7 FPGA, resulting in 45% and 62% average reductions in area and latency compared to the best reported architecture in literature. We also synthesize the circuits in a 65 nm CMOS technology and we show that the proposed integral stochastic architecture results in up to 21% reduction in energy consumption compared to the binary radix implementation at the same misclassification rate. Due to fault-tolerant nature of stochastic architectures, we also consider a quasi-synchronous implementation which yields 33% reduction in energy consumption w.r.t. the binary radix implementation without any compromise on performance.
Abstract:Associative memories are structures that store data patterns and retrieve them given partial inputs. Sparse Clustered Networks (SCNs) are recently-introduced binary-weighted associative memories that significantly improve the storage and retrieval capabilities over the prior state-of-the art. However, deleting or updating the data patterns result in a significant increase in the data retrieval error probability. In this paper, we propose an algorithm to address this problem by incorporating multiple-valued weights for the interconnections used in the network. The proposed algorithm lowers the error rate by an order of magnitude for our sample network with 60% deleted contents. We then investigate the advantages of the proposed algorithm for hardware implementations.