Abstract:We present a new Lyapunov-based switching attitude controller for energy-efficient real-time selection of the torque inputted to an uncrewed aerial vehicle (UAV) during flight. The proposed method, using quaternions to describe the attitude of the controlled UAV, interchanges the stability properties of the two fixed points-one locally asymptotically stable and another unstable-of the resulting closed-loop (CL) switching dynamics of the system. In this approach, the switching events are triggered by the value of a compound energy-based function. To analyze and ensure the stability of the CL switching dynamics, we use classical nonlinear Lyapunov techniques, in combination with switching-systems theory. For this purpose, we introduce a new compound Lyapunov function (LF) that not only enables us to derive the conditions for CL asymptotic and exponential stability, but also provides us with an estimate of the CL system's region of attraction. This new estimate is considerably larger than those previously reported for systems of the type considered in this paper. To test and demonstrate the functionality, suitability, and performance of the proposed method, we present and discuss experimental data obtained using a 31-g quadrotor during the execution of high-speed yaw-tracking maneuvers. Also, we provide empirical evidence indicating that all the initial conditions chosen for these maneuvers, as estimated, lie inside the system's region of attraction. Last, experimental data obtained through these flight tests show that the proposed switching controller reduces the control effort by about 53%, on average, with respect to that corresponding to a commonly used benchmark control scheme, when executing a particular type of high-speed yaw-tracking maneuvers.
Abstract:We present model predictive selection (MPS), a new method for selecting the stable closed-loop (CL) equilibrium attitude-error quaternion (AEQ) of an uncrewed aerial vehicle (UAV) during the execution of high-speed yaw maneuvers. In this approach, we minimize the cost of yawing measured with a performance figure of merit (PFM) that takes into account both the aerodynamic-torque control input and attitude-error state of the UAV. Specifically, this method uses a control law with a term whose sign is dynamically switched in real time to select, between two options, the torque associated with the lesser cost of rotation as predicted by a dynamical model of the UAV derived from first principles. This problem is relevant because the selection of the stable CL equilibrium AEQ significantly impacts the performance of a UAV during high-speed rotational flight, from both the power and control-error perspectives. To test and demonstrate the functionality and performance of the proposed method, we present data collected during one hundred real-time high-speed yaw-tracking flight experiments. These results highlight the superior capabilities of the proposed MPS-based scheme when compared to a benchmark controller commonly used in aerial robotics, as the PFM used to quantify the cost of flight is reduced by 60.30 %, on average. To our best knowledge, these are the first flight-test results that thoroughly demonstrate, evaluate, and compare the performance of a real-time controller capable of selecting the stable CL equilibrium AEQ during operation.
Abstract:We introduce Bee$^+$, a 95-mg four-winged microrobot with improved controllability and open-loop-response characteristics with respect to those exhibited by state-of-the-art two-winged microrobots with the same size and similar weight (i.e., the 75-mg Harvard RoboBee and similar prototypes). The key innovation that made possible the development of Bee$^+$ is the introduction of an extremely light (28-mg) twinned unimorph actuator, which enabled the design of a new microrobotic mechanism that flaps four wings independently. A first main advantage of the proposed design, compared to two-winged RoboBee-like flyers, is that by increasing the number of actuators from two to four, the number of direct control inputs increases from three (roll-torque, pitch-torque and thrust-force) to four (roll-torque, pitch-torque, yaw-torque and thrust-force) when simple sinusoidal excitations are employed. A second advantage of Bee$^+$ is that its four-wing configuration and flapping mode naturally damped the rotational disturbances that commonly affect the yaw degree of freedom of two-winged microrobots. In addition, the design of Bee$^+$ greatly reduces the complexity of the associated fabrication process compared to those of other microrobots, as the unimorph actuators are fairly easy to build. Lastly, we hypothesize that given the relatively low wing-loading affecting their flapping mechanisms, the life expectancy of Bee$^+$s must be considerably higher than those of the two-winged counterparts. The functionality and basic capabilities of Bee$^+$ are demonstrated through a set of simple control experiments. We anticipate that this new platform will enable the implementation of high-performance controllers for the execution of high-speed aerobatic maneuvers at the sub-100-mg scale as well as diversifying the lines of research in the quest for achieving full autonomy at the sub-gram scale.
Abstract:We present the modeling, design, fabrication and feedback control of an earthworm-inspired soft robot capable of crawling on surfaces by actively manipulating the frictional force between its body and the surface. Earthworms are segmented worms composed of repeating units known as metameres. The muscle and setae structure embedded in each individual metamere makes possible its peristaltic locomotion both under and above ground. Here, we propose a pneumatically-driven soft robotic system made of parts analogous to the muscle and setae structure and can replicate the crawling motion of a single earthworm metamere. A model is also introduced to describe the crawling dynamics of the proposed robotic system and proven be controllable. Robust crawling locomotion is then experimentally verified.