Abstract:Large Language Models (LLMs) have proven their worth across a diverse spectrum of disciplines. LLMs have shown great potential in Procedural Content Generation (PCG) as well, but directly generating a level through a pre-trained LLM is still challenging. This work introduces Word2World, a system that enables LLMs to procedurally design playable games through stories, without any task-specific fine-tuning. Word2World leverages the abilities of LLMs to create diverse content and extract information. Combining these abilities, LLMs can create a story for the game, design narrative, and place tiles in appropriate places to create coherent worlds and playable games. We test Word2World with different LLMs and perform a thorough ablation study to validate each step. We open-source the code at https://github.com/umair-nasir14/Word2World.
Abstract:Large Language Models (LLMs) have emerged as powerful tools capable of accomplishing a broad spectrum of tasks. Their abilities span numerous areas, and one area where they have made a significant impact is in the domain of code generation. In this context, we view LLMs as mutation and crossover tools. Meanwhile, Quality-Diversity (QD) algorithms are known to discover diverse and robust solutions. By merging the code-generating abilities of LLMs with the diversity and robustness of QD solutions, we introduce LLMatic, a Neural Architecture Search (NAS) algorithm. While LLMs struggle to conduct NAS directly through prompts, LLMatic uses a procedural approach, leveraging QD for prompts and network architecture to create diverse and highly performant networks. We test LLMatic on the CIFAR-10 image classification benchmark, demonstrating that it can produce competitive networks with just $2,000$ searches, even without prior knowledge of the benchmark domain or exposure to any previous top-performing models for the benchmark.