Abstract:A major hurdle in widespread deployment of UAVs (unmanned aerial vehicle) in existing communications infrastructure is the limited UAV onboard energy. Therefore, this study considers solar energy harvesting UAVs for wireless communications. In this context, we consider three dimensional position optimization of a solar-powered UAV relay that connects a distant sensor field to an optical ground station (OGS) for data processing. The integrated sensor-UAV-OGS network utilizes radio frequency band for sensor-to-UAV links and the optical band for the UAV-to-OGS feeder link. Since atmospheric conditions affect both the harvested solar energy as well as the optical wireless signal, this study tackles UAV position optimization problems under various channel conditions such as clouds, atmospheric turbulence and dirt. From this study, we discover that the optimum position of the UAV -- that maximizes the end-to-end channel capacity -- is heavily dependent on the atmospheric channel conditions.
Abstract:The selection of an optimal photodetector area is closely linked to the attainment of higher data rates in optical wireless communication receivers. If the photodetector area is too large, the channel capacity degrades due to lower modulation bandwidth of the detector. A smaller photodetector maximizes the bandwidth, but minimizes the captured signal power and the subsequent signal-to-noise ratio. Therein lies an opportunity in this trade-off to maximize the channel rate by choosing the optimal photodetector area. In this study, we have optimized the photodetector area in order to maximize the channel capacity of a free-space optical link for a diverse set of communication scenarios. We believe that the study in this paper in general -- and the closed-form solutions derived in this study in particular -- will be helpful to maximize achievable data rates of a wide gamut of optical wireless communication systems: from long range deep space optical links to short range indoor visible light communication systems.
Abstract:Due to the narrow beamwidths of laser Gaussian beams, accurate tracking of laser beam's angle-of-arrival is an important problem in mobile free-space optical communications. In most optical receivers today, fine tracking of angle-of-arrival involves estimating the location of the focused beam spot projected onto a focal plane array. However, for very thin Gaussian beams, both the location as well as the energy of the spot varies considerably with the variation of angle-of-arrival. In this study, we have analyzed the relationship between the angle-of-arrival and the energy of laser spot on the focal plane. We then exploited this relationship to enhance the angle-of-arrival estimation performance of our proposed receiver that takes into account both the location as well as the energy of the laser spot while estimating the angle-of-arrival. The derived Cramer-Rao bounds indicate that the system performance can be enhanced significantly for narrow Gaussian beams when both the spot location and energy are exploited for angle-of-arrival estimation.
Abstract:For acquisition of narrow-beam free-space optical (FSO) terminals, a Global Positioning System (GPS) is typically required for coarse localization of the terminal. However, the GPS signal may be shadowed, or may not be present at all, especially in rough or unnameable terrains. In this study, we propose a lidar-assisted acquisition of an unmanned aerial vehicle (UAV) for FSO communications in a poor GPS environment. Such an acquisition system consists of a lidar subsystem and an FSO acquisition subsystem: The lidar subsystem is used for coarse acquisition of the UAV, whereas, the FSO subsystem is utilized for fine acquisition to obtain the UAV's accurate position. This study investigates the optimal allocation of energy between the lidar and FSO subsystems to minimize the acquisition time. Here, we minimize the average acquisition time, and maximize the cumulative distribution function of acquisition time for a fixed threshold. We learn that an optimal value of the energy allocation factor exists that provides the best performance for the proposed acquisition system.