Abstract:Many cattle farmers still depend on manual methods to measure the live weight gain of cattle at set intervals, which is time consuming, labour intensive, and stressful for both the animals and handlers. A remote and autonomous monitoring system using machine learning (ML) or deep learning (DL) can provide a more efficient and less invasive method and also predictive capabilities for future cattle weight gain (CWG). This system allows continuous monitoring and estimation of individual cattle live weight gain, growth rates and weight fluctuations considering various factors like environmental conditions, genetic predispositions, feed availability, movement patterns and behaviour. Several researchers have explored the efficiency of estimating CWG using ML and DL algorithms. However, estimating CWG suffers from a lack of consistency in its application. Moreover, ML or DL can provide weight gain estimations based on several features that vary in existing research. Additionally, previous studies have encountered various data related challenges when estimating CWG. This paper presents a comprehensive investigation in estimating CWG using advanced ML techniques based on research articles (between 2004 and 2024). This study investigates the current tools, methods, and features used in CWG estimation, as well as their strengths and weaknesses. The findings highlight the significance of using advanced ML approaches in CWG estimation and its critical influence on factors. Furthermore, this study identifies potential research gaps and provides research direction on CWG prediction, which serves as a reference for future research in this area.
Abstract:Precise Soil Moisture (SM) assessment is essential in agriculture. By understanding the level of SM, we can improve yield irrigation scheduling which significantly impacts food production and other needs of the global population. The advancements in smartphone technologies and computer vision have demonstrated a non-destructive nature of soil properties, including SM. The study aims to analyze the existing Machine Learning (ML) techniques for estimating SM from soil images and understand the moisture accuracy using different smartphones and various sunlight conditions. Therefore, 629 images of 38 soil samples were taken from seven areas in Sydney, Australia, and split into four datasets based on the image-capturing devices used (iPhone 6s and iPhone 11 Pro) and the lighting circumstances (direct and indirect sunlight). A comparison between Multiple Linear Regression (MLR), Support Vector Regression (SVR), and Convolutional Neural Network (CNN) was presented. MLR was performed with higher accuracy using holdout cross-validation, where the images were captured in indirect sunlight with the Mean Absolute Error (MAE) value of 0.35, Root Mean Square Error (RMSE) value of 0.15, and R^2 value of 0.60. Nevertheless, SVR was better with MAE, RMSE, and R^2 values of 0.05, 0.06, and 0.96 for 10-fold cross-validation and 0.22, 0.06, and 0.95 for leave-one-out cross-validation when images were captured in indirect sunlight. It demonstrates a smartphone camera's potential for predicting SM by utilizing ML. In the future, software developers can develop mobile applications based on the research findings for accurate, easy, and rapid SM estimation.