Abstract:This paper focuses on the fundamental problem of maximizing the achievable weighted sum rate (WSR) at information receivers (IRs) in an intelligent reflecting surface (IRS) assisted simultaneous wireless information and power transfer system under a multiple-input multiple-output (SWIPT-MIMO) setting, subject to a quality-of-service (QoS) constraint at the energy receivers (ERs). Notably, due to the coupling between the transmit precoding matrix and the passive beamforming vector in the QoS constraint, the formulated non-convex optimization problem is challenging to solve. We first decouple the design variables in the constraints following a penalty dual decomposition method, and then apply an alternating gradient projection algorithm to achieve a stationary solution to the reformulated optimization problem. The proposed algorithm nearly doubles the WSR compared to that achieved by a block-coordinate descent (BCD) based benchmark scheme. At the same time, the complexity of the proposed scheme grows linearly with the number of IRS elements while that of the benchmark scheme is proportional to the cube of the number of IRS elements.
Abstract:To mitigate computational power gap between the network core and edges, mobile edge computing (MEC) is poised to play a fundamental role in future generations of wireless networks. In this letter, we consider a non-orthogonal multiple access (NOMA) transmission model to maximize the worst task to be offloaded among all users to the network edge server. A provably convergent and efficient algorithm is developed to solve the considered non-convex optimization problem for maximizing the minimum number of offloaded bits in a multi-user NOMAMEC system. Compared to the approach of optimized orthogonal multiple access (OMA), for given MEC delay, power and energy limits, the NOMA-based system considerably outperforms its OMA-based counterpart in MEC settings. Numerical results demonstrate that the proposed algorithm for NOMA-based MEC is particularly useful for delay sensitive applications.