Abstract:Breast cancer has rapidly increased in prevalence in recent years, making it one of the leading causes of mortality worldwide. Among all cancers, it is by far the most common. Diagnosing this illness manually requires significant time and expertise. Since detecting breast cancer is a time-consuming process, preventing its further spread can be aided by creating machine-based forecasts. Machine learning and Explainable AI are crucial in classification as they not only provide accurate predictions but also offer insights into how the model arrives at its decisions, aiding in the understanding and trustworthiness of the classification results. In this study, we evaluate and compare the classification accuracy, precision, recall, and F-1 scores of five different machine learning methods using a primary dataset (500 patients from Dhaka Medical College Hospital). Five different supervised machine learning techniques, including decision tree, random forest, logistic regression, naive bayes, and XGBoost, have been used to achieve optimal results on our dataset. Additionally, this study applied SHAP analysis to the XGBoost model to interpret the model's predictions and understand the impact of each feature on the model's output. We compared the accuracy with which several algorithms classified the data, as well as contrasted with other literature in this field. After final evaluation, this study found that XGBoost achieved the best model accuracy, which is 97%.
Abstract:The rise of fake news has made the need for effective detection methods, including in languages other than English, increasingly important. The study aims to address the challenges of Bangla which is considered a less important language. To this end, a complete dataset containing about 50,000 news items is proposed. Several deep learning models have been tested on this dataset, including the bidirectional gated recurrent unit (GRU), the long short-term memory (LSTM), the 1D convolutional neural network (CNN), and hybrid architectures. For this research, we assessed the efficacy of the model utilizing a range of useful measures, including recall, precision, F1 score, and accuracy. This was done by employing a big application. We carry out comprehensive trials to show the effectiveness of these models in identifying bogus news in Bangla, with the Bidirectional GRU model having a stunning accuracy of 99.16%. Our analysis highlights the importance of dataset balance and the need for continual improvement efforts to a substantial degree. This study makes a major contribution to the creation of Bangla fake news detecting systems with limited resources, thereby setting the stage for future improvements in the detection process.