Abstract:The rise of fake news has made the need for effective detection methods, including in languages other than English, increasingly important. The study aims to address the challenges of Bangla which is considered a less important language. To this end, a complete dataset containing about 50,000 news items is proposed. Several deep learning models have been tested on this dataset, including the bidirectional gated recurrent unit (GRU), the long short-term memory (LSTM), the 1D convolutional neural network (CNN), and hybrid architectures. For this research, we assessed the efficacy of the model utilizing a range of useful measures, including recall, precision, F1 score, and accuracy. This was done by employing a big application. We carry out comprehensive trials to show the effectiveness of these models in identifying bogus news in Bangla, with the Bidirectional GRU model having a stunning accuracy of 99.16%. Our analysis highlights the importance of dataset balance and the need for continual improvement efforts to a substantial degree. This study makes a major contribution to the creation of Bangla fake news detecting systems with limited resources, thereby setting the stage for future improvements in the detection process.
Abstract:Sugarcane, a key crop for the world's sugar industry, is prone to several diseases that have a substantial negative influence on both its yield and quality. To effectively manage and implement preventative initiatives, diseases must be detected promptly and accurately. In this study, we present a unique model called sugarcaneNet2024 that outperforms previous methods for automatically and quickly detecting sugarcane disease through leaf image processing. Our proposed model consolidates an optimized weighted average ensemble of seven customized and LASSO-regularized pre-trained models, particularly InceptionV3, InceptionResNetV2, DenseNet201, DenseNet169, Xception, and ResNet152V2. Initially, we added three more dense layers with 0.0001 LASSO regularization, three 30% dropout layers, and three batch normalizations with renorm enabled at the bottom of these pre-trained models to improve the performance. The accuracy of sugarcane leaf disease classification was greatly increased by this addition. Following this, several comparative studies between the average ensemble and individual models were carried out, indicating that the ensemble technique performed better. The average ensemble of all modified pre-trained models produced outstanding outcomes: 100%, 99%, 99%, and 99.45% for f1 score, precision, recall, and accuracy, respectively. Performance was further enhanced by the implementation of an optimized weighted average ensemble technique incorporated with grid search. This optimized sugarcaneNet2024 model performed the best for detecting sugarcane diseases, having achieved accuracy, precision, recall, and F1 score of 99.67%, 100%, 100%, and 100% , respectively.
Abstract:Heart failure is a life-threatening condition that affects millions of people worldwide. The ability to accurately predict patient survival can aid in early intervention and improve patient outcomes. In this study, we explore the potential of utilizing data pre-processing techniques and the Extra-Tree (ET) feature selection method in conjunction with the Random Forest (RF) classifier to improve survival prediction in heart failure patients. By leveraging the strengths of ET feature selection, we aim to identify the most significant predictors associated with heart failure survival. Using the public UCL Heart failure (HF) survival dataset, we employ the ET feature selection algorithm to identify the most informative features. These features are then used as input for grid search of RF. Finally, the tuned RF Model was trained and evaluated using different matrices. The approach was achieved 98.33% accuracy that is the highest over the exiting work.
Abstract:Epilepsy is a prevalent neurological disorder characterized by recurrent and unpredictable seizures, necessitating accurate prediction for effective management and patient care. Application of machine learning (ML) on electroencephalogram (EEG) recordings, along with its ability to provide valuable insights into brain activity during seizures, is able to make accurate and robust seizure prediction an indispensable component in relevant studies. In this research, we present a comprehensive comparative analysis of five machine learning models - Random Forest (RF), Decision Tree (DT), Extra Trees (ET), Logistic Regression (LR), and Gradient Boosting (GB) - for the prediction of epileptic seizures using EEG data. The dataset underwent meticulous preprocessing, including cleaning, normalization, outlier handling, and oversampling, ensuring data quality and facilitating accurate model training. These preprocessing techniques played a crucial role in enhancing the models' performance. The results of our analysis demonstrate the performance of each model in terms of accuracy. The LR classifier achieved an accuracy of 56.95%, while GB and DT both attained 97.17% accuracy. RT achieved a higher accuracy of 98.99%, while the ET model exhibited the best performance with an accuracy of 99.29%. Our findings reveal that the ET model outperformed not only the other models in the comparative analysis but also surpassed the state-of-the-art results from previous research. The superior performance of the ET model makes it a compelling choice for accurate and robust epileptic seizure prediction using EEG data.
Abstract:Potatoes are the third-largest food crop globally, but their production frequently encounters difficulties because of aggressive pest infestations. The aim of this study is to investigate the various types and characteristics of these pests and propose an efficient PotatoPestNet AI-based automatic potato pest identification system. To accomplish this, we curated a reliable dataset consisting of eight types of potato pests. We leveraged the power of transfer learning by employing five customized, pre-trained transfer learning models: CMobileNetV2, CNASLargeNet, CXception, CDenseNet201, and CInceptionV3, in proposing a robust PotatoPestNet model to accurately classify potato pests. To improve the models' performance, we applied various augmentation techniques, incorporated a global average pooling layer, and implemented proper regularization methods. To further enhance the performance of the models, we utilized random search (RS) optimization for hyperparameter tuning. This optimization technique played a significant role in fine-tuning the models and achieving improved performance. We evaluated the models both visually and quantitatively, utilizing different evaluation metrics. The robustness of the models in handling imbalanced datasets was assessed using the Receiver Operating Characteristic (ROC) curve. Among the models, the Customized Tuned Inception V3 (CTInceptionV3) model, optimized through random search, demonstrated outstanding performance. It achieved the highest accuracy (91%), precision (91%), recall (91%), and F1-score (91%), showcasing its superior ability to accurately identify and classify potato pests.
Abstract:Fetal health is a critical concern during pregnancy as it can impact the well-being of both the mother and the baby. Regular monitoring and timely interventions are necessary to ensure the best possible outcomes. While there are various methods to monitor fetal health in the mother's womb, the use of artificial intelligence (AI) can improve the accuracy, efficiency, and speed of diagnosis. In this study, we propose a robust ensemble model called ensemble of tuned Support Vector Machine and ExtraTrees (ETSE) for predicting fetal health. Initially, we employed various data preprocessing techniques such as outlier rejection, missing value imputation, data standardization, and data sampling. Then, seven machine learning (ML) classifiers including Support Vector Machine (SVM), XGBoost (XGB), Light Gradient Boosting Machine (LGBM), Decision Tree (DT), Random Forest (RF), ExtraTrees (ET), and K-Neighbors were implemented. These models were evaluated and then optimized by hyperparameter tuning using the grid search technique. Finally, we analyzed the performance of our proposed ETSE model. The performance analysis of each model revealed that our proposed ETSE model outperformed the other models with 100% precision, 100% recall, 100% F1-score, and 99.66% accuracy. This indicates that the ETSE model can effectively predict fetal health, which can aid in timely interventions and improve outcomes for both the mother and the baby.