Abstract:Cloud occlusion significantly hinders remote sensing applications by obstructing surface information and complicating analysis. To address this, we propose DC4CR (Diffusion Control for Cloud Removal), a novel multimodal diffusion-based framework for cloud removal in remote sensing imagery. Our method introduces prompt-driven control, allowing selective removal of thin and thick clouds without relying on pre-generated cloud masks, thereby enhancing preprocessing efficiency and model adaptability. Additionally, we integrate low-rank adaptation for computational efficiency, subject-driven generation for improved generalization, and grouped learning to enhance performance on small datasets. Designed as a plug-and-play module, DC4CR seamlessly integrates into existing cloud removal models, providing a scalable and robust solution. Extensive experiments on the RICE and CUHK-CR datasets demonstrate state-of-the-art performance, achieving superior cloud removal across diverse conditions. This work presents a practical and efficient approach for remote sensing image processing with broad real-world applications.
Abstract:We present DanceText, a training-free framework for multilingual text editing in images, designed to support complex geometric transformations and achieve seamless foreground-background integration. While diffusion-based generative models have shown promise in text-guided image synthesis, they often lack controllability and fail to preserve layout consistency under non-trivial manipulations such as rotation, translation, scaling, and warping. To address these limitations, DanceText introduces a layered editing strategy that separates text from the background, allowing geometric transformations to be performed in a modular and controllable manner. A depth-aware module is further proposed to align appearance and perspective between the transformed text and the reconstructed background, enhancing photorealism and spatial consistency. Importantly, DanceText adopts a fully training-free design by integrating pretrained modules, allowing flexible deployment without task-specific fine-tuning. Extensive experiments on the AnyWord-3M benchmark demonstrate that our method achieves superior performance in visual quality, especially under large-scale and complex transformation scenarios.
Abstract:Precipitation plays a critical role in the Earth's hydrological cycle, directly affecting ecosystems, agriculture, and water resource management. Accurate precipitation estimation and prediction are crucial for understanding climate dynamics, disaster preparedness, and environmental monitoring. In recent years, artificial intelligence (AI) has gained increasing attention in quantitative remote sensing (QRS), enabling more advanced data analysis and improving precipitation estimation accuracy. Although traditional methods have been widely used for precipitation estimation, they face limitations due to the difficulty of data acquisition and the challenge of capturing complex feature relationships. Furthermore, the lack of standardized multi-source satellite datasets, and in most cases, the exclusive reliance on station data, significantly hinders the effective application of advanced AI models. To address these challenges, we propose the Rainy dataset, a multi-source spatio-temporal dataset that integrates pure satellite data with station data, and propose Taper Loss, designed to fill the gap in tasks where only in-situ data is available without area-wide support. The Rainy dataset supports five main tasks: (1) satellite calibration, (2) precipitation event prediction, (3) precipitation level prediction, (4) spatiotemporal prediction, and (5) precipitation downscaling. For each task, we selected benchmark models and evaluation metrics to provide valuable references for researchers. Using precipitation as an example, the Rainy dataset and Taper Loss demonstrate the seamless collaboration between QRS and computer vision, offering data support for AI for Science in the field of QRS and providing valuable insights for interdisciplinary collaboration and integration.
Abstract:This paper proposes a new hybrid algorithm, combining FA, SSO, and the N-R method to accelerate convergence towards global optima, named the Hybrid Firefly Algorithm and Sperm Swarm Optimization with Newton-Raphson (HFASSON). The performance of HFASSON is evaluated using 23 benchmark functions from the CEC 2017 suite, tested in 30, 50, and 100 dimensions. A statistical comparison is performed to assess the effectiveness of HFASSON against FA, SSO, HFASSO, and five hybrid algorithms: Water Cycle Moth Flame Optimization (WCMFO), Hybrid Particle Swarm Optimization and Genetic Algorithm (HPSOGA), Hybrid Sperm Swarm Optimization and Gravitational Search Algorithm (HSSOGSA), Grey Wolf and Cuckoo Search Algorithm (GWOCS), and Hybrid Firefly Genetic Algorithm (FAGA). Results from the Friedman rank test show the superior performance of HFASSON. Additionally, HFASSON is applied to Cognitive Radio Vehicular Ad-hoc Networks (CR-VANET), outperforming basic CR-VANET in spectrum utilization. These findings demonstrate HFASSON's efficiency in wireless network applications.