Abstract:Several architecture frameworks for software, systems, and enterprises have been proposed in the literature. They identified various stakeholders and defined architecture viewpoints and views to frame and address stakeholder concerns. However, the stakeholders with data science and Machine Learning (ML) related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks. Therefore, they failed to address the architecture viewpoints and views responsive to the concerns of the data science community. In this paper, we address this gap by establishing the architecture frameworks adapted to meet the requirements of modern applications and organizations where ML artifacts are both prevalent and crucial. In particular, we focus on ML-enabled Cyber-Physical Systems (CPSs) and propose two sets of merit criteria for their efficient development and performance assessment, namely the criteria for evaluating and benchmarking ML-enabled CPSs, and the criteria for evaluation and benchmarking of the tools intended to support users through the modeling and development pipeline. In this study, we deploy multiple empirical and qualitative research methods based on literature review and survey instruments including expert interviews and an online questionnaire. We collect, analyze, and integrate the opinions of 77 experts from more than 25 organizations in over 10 countries to devise and validate the proposed framework.
Abstract:Recently, several studies have proposed frameworks for Quantum Federated Learning (QFL). For instance, the Google TensorFlow Quantum (TFQ) and TensorFlow Federated (TFF) libraries have been deployed for realizing QFL. However, developers, in the main, are not as yet familiar with Quantum Computing (QC) libraries and frameworks. A Domain-Specific Modeling Language (DSML) that provides an abstraction layer over the underlying QC and Federated Learning (FL) libraries would be beneficial. This could enable practitioners to carry out software development and data science tasks efficiently while deploying the state of the art in Quantum Machine Learning (QML). In this position paper, we propose extending existing domain-specific Model-Driven Engineering (MDE) tools for Machine Learning (ML) enabled systems, such as MontiAnna, ML-Quadrat, and GreyCat, to support QFL.
Abstract:In this paper, we propose to adopt the MDE paradigm for the development of Machine Learning (ML)-enabled software systems with a focus on the Internet of Things (IoT) domain. We illustrate how two state-of-the-art open-source modeling tools, namely MontiAnna and ML-Quadrat can be used for this purpose as demonstrated through a case study. The case study illustrates using ML, in particular deep Artificial Neural Networks (ANNs), for automated image recognition of handwritten digits using the MNIST reference dataset, and integrating the machine learning components into an IoT system. Subsequently, we conduct a functional comparison of the two frameworks, setting out an analysis base to include a broad range of design considerations, such as the problem domain, methods for the ML integration into larger systems, and supported ML methods, as well as topics of recent intense interest to the ML community, such as AutoML and MLOps. Accordingly, this paper is focused on elucidating the potential of the MDE approach in the ML domain. This supports the ML engineer in developing the (ML/software) model rather than implementing the code, and additionally enforces reusability and modularity of the design through enabling the out-of-the-box integration of ML functionality as a component of the IoT or cyber-physical systems.
Abstract:Developing smart software services requires both Software Engineering and Artificial Intelligence (AI) skills. AI practitioners, such as data scientists often focus on the AI side, for example, creating and training Machine Learning (ML) models given a specific use case and data. They are typically not concerned with the entire software development life-cycle, architectural decisions for the system and performance issues beyond the predictive ML models (e.g., regarding the security, privacy, throughput, scalability, availability, as well as ethical, legal and regulatory compliance). In this manuscript, we propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering. In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems by choosing the most appropriate ML model, algorithm and techniques with suitable hyper-parameters for the task at hand. To validate our work, we carry out a case study in the smart energy domain.
Abstract:Over the past decade, Artificial Intelligence (AI) has provided enormous new possibilities and opportunities, but also new demands and requirements for software systems. In particular, Machine Learning (ML) has proven useful in almost every vertical application domain. Although other sub-disciplines of AI, such as intelligent agents and Multi-Agent Systems (MAS) did not become promoted to the same extent, they still possess the potential to be integrated into the mainstream technology stacks and ecosystems, for example, due to the ongoing prevalence of the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS). However, in the decade ahead, an unprecedented paradigm shift from classical computing towards Quantum Computing (QC) is expected, with perhaps a quantum-classical hybrid model. We expect the Model-Driven Engineering (MDE) paradigm to be an enabler and a facilitator, when it comes to the quantum and the quantum-classical hybrid applications as it has already proven beneficial in the highly complex domains of IoT, smart CPS and AI with inherently heterogeneous hardware and software platforms, and APIs. This includes not only automated code generation, but also automated model checking and verification, as well as model analysis in the early design phases, and model-to-model transformations both at the design-time and at the runtime. In this paper, the vision is focused on MDE for Quantum AI, and a holistic approach integrating all of the above.