Abstract:Building a generalist model for user interface (UI) understanding is challenging due to various foundational issues, such as platform diversity, resolution variation, and data limitation. In this paper, we introduce Ferret-UI 2, a multimodal large language model (MLLM) designed for universal UI understanding across a wide range of platforms, including iPhone, Android, iPad, Webpage, and AppleTV. Building on the foundation of Ferret-UI, Ferret-UI 2 introduces three key innovations: support for multiple platform types, high-resolution perception through adaptive scaling, and advanced task training data generation powered by GPT-4o with set-of-mark visual prompting. These advancements enable Ferret-UI 2 to perform complex, user-centered interactions, making it highly versatile and adaptable for the expanding diversity of platform ecosystems. Extensive empirical experiments on referring, grounding, user-centric advanced tasks (comprising 9 subtasks $\times$ 5 platforms), GUIDE next-action prediction dataset, and GUI-World multi-platform benchmark demonstrate that Ferret-UI 2 significantly outperforms Ferret-UI, and also shows strong cross-platform transfer capabilities.
Abstract:The protein-protein interaction (PPI) network provides an overview of the complex biological reactions vital to an organism's metabolism and survival. Even though in the past PPI network were compared across organisms in detail, there has not been large-scale research on how individual PPI networks reflect on the species relationships. In this study we aim to increase our understanding of the tree of life and taxonomy by gleaming information from the PPI networks. We successful created (1) a predictor of network statistics based on known traits of existing species in the phylogeny, and (2) a taxonomic classifier of organism using the known protein network statistics, whether experimentally determined or predicted de novo. With the knowledge of protein interactions at its core, our two models effectively connects two field with widely diverging methodologies - the phylogeny and taxonomy of species.