Abstract:This research combines Knowledge Distillation (KD) and Mixture of Experts (MoE) to develop modular, efficient multilingual language models. Key objectives include evaluating adaptive versus fixed alpha methods in KD and comparing modular MoE architectures for handling multi-domain inputs and preventing catastrophic forgetting. KD compresses large language models (LLMs) into smaller, efficient models, while MoE enhances modularity with specialized tasks. Experiments showed similar performance for both KD methods, with marginal improvements from adaptive alpha. A combined loss approach provided more stable learning. The router, trained to classify input sequences into English, French, German, or Python, achieved 99.95% precision, recall, and F1 score, with Logistic Regression being the most effective classifier. Evaluations of modular MoE architectures revealed that Pre-trained Language Experts (PLE) and Joint Expert Embedding Training (JEET) performed similarly, while the MoE with Common Expert (MoE-CE) setup showed slightly lower performance. Including a common expert in MoE-CE improved its performance. Studies on catastrophic forgetting indicated that sequential training led to significant forgetting, while single-session training with balanced batches and the MoE approach mitigated this issue. The MoE architecture preserved knowledge across multiple languages effectively. The research contributes open-sourced resources including the dataset (https://zenodo.org/doi/10.5281/zenodo.12677631), a balanced dataset creation tool (https://github.com/padas-lab-de/multi-language-dataset-creator), and the research codebase (https://github.com/ModMaamari/mixture-modular-experts).
Abstract:Patient triage at emergency departments (EDs) is necessary to prioritize care for patients with critical and time-sensitive conditions. Different tools are used for patient triage and one of the most common ones is the emergency severity index (ESI), which has a scale of five levels, where level 1 is the most urgent and level 5 is the least urgent. This paper proposes a framework for utilizing machine learning to develop an e-triage tool that can be used at EDs. A large retrospective dataset of ED patient visits is obtained from the electronic health record of a healthcare provider in the Midwest of the US for three years. However, the main challenge of using machine learning algorithms is that most of them have many parameters and without optimizing these parameters, developing a high-performance model is not possible. This paper proposes an approach to optimize the hyperparameters of machine learning. The metaheuristic optimization algorithms simulated annealing (SA) and adaptive simulated annealing (ASA) are proposed to optimize the parameters of extreme gradient boosting (XGB) and categorical boosting (CaB). The newly proposed algorithms are SA-XGB, ASA-XGB, SA-CaB, ASA-CaB. Grid search (GS), which is a traditional approach used for machine learning fine-tunning is also used to fine-tune the parameters of XGB and CaB, which are named GS-XGB and GS-CaB. The six algorithms are trained and tested using eight data groups obtained from the feature selection phase. The results show ASA-CaB outperformed all the proposed algorithms with accuracy, precision, recall, and f1 of 83.3%, 83.2%, 83.3%, 83.2%, respectively.