Abstract:Certain environmental noises have been associated with negative developmental outcomes for infants and young children. Though classifying or tagging sound events in a domestic environment is an active research area, previous studies focused on data collected from a non-stationary microphone placed in the environment or from the perspective of adults. Further, many of these works ignore infants or young children in the environment or have data collected from only a single family where noise from the fixed sound source can be moderate at the infant's position or vice versa. Thus, despite the recent success of large pre-trained models for noise event detection, the performance of these models on infant-centric noise soundscapes in the home is yet to be explored. To bridge this gap, we have collected and labeled noises in home soundscapes from 22 families in an unobtrusive manner, where the data are collected through an infant-worn recording device. In this paper, we explore the performance of a large pre-trained model (Audio Spectrogram Transformer [AST]) on our noise-conditioned infant-centric environmental data as well as publicly available home environmental datasets. Utilizing different training strategies such as resampling, utilizing public datasets, mixing public and infant-centric training sets, and data augmentation using noise and masking, we evaluate the performance of a large pre-trained model on sparse and imbalanced infant-centric data. Our results show that fine-tuning the large pre-trained model by combining our collected dataset with public datasets increases the F1-score from 0.11 (public datasets) and 0.76 (collected datasets) to 0.84 (combined datasets) and Cohen's Kappa from 0.013 (public datasets) and 0.77 (collected datasets) to 0.83 (combined datasets) compared to only training with public or collected datasets, respectively.
Abstract:Integrating inertial measurement units (IMUs) with large language models (LLMs) advances multimodal AI by enhancing human activity understanding. We introduce SensorCaps, a dataset of 26,288 IMU-derived activity narrations, and OpenSQA, an instruction-following dataset with 257,562 question-answer pairs. Combining LIMU-BERT and Llama, we develop LLaSA, a Large Multimodal Agent capable of interpreting and responding to activity and motion analysis queries. Our evaluation demonstrates LLaSA's effectiveness in activity classification and question answering, highlighting its potential in healthcare, sports science, and human-computer interaction. These contributions advance sensor-aware language models and open new research avenues. Our code repository and datasets can be found on https://github.com/BASHLab/LLaSA.