Abstract:Additive manufacturing has revolutionized the manufacturing of complex parts by enabling direct material joining and offers several advantages such as cost-effective manufacturing of complex parts, reducing manufacturing waste, and opening new possibilities for manufacturing automation. One group of materials for which additive manufacturing holds great potential for enhancing component performance and properties is Functionally Graded Materials (FGMs). FGMs are advanced composite materials that exhibit smoothly varying properties making them desirable for applications in aerospace, automobile, biomedical, and defense industries. Such composition differs from traditional composite materials, since the location-dependent composition changes gradually in FGMs, leading to enhanced properties. Recently, machine learning techniques have emerged as a promising means for fabrication of FGMs through optimizing processing parameters, improving product quality, and detecting manufacturing defects. This paper first provides a brief literature review of works related to FGM fabrication, followed by reviewing works on employing machine learning in additive manufacturing, Afterward, we provide an overview of published works in the literature related to the application of machine learning methods in Directed Energy Deposition and for fabrication of FGMs.
Abstract:Despite recent medical advancements, breast cancer remains one of the most prevalent and deadly diseases among women. Although machine learning-based Computer-Aided Diagnosis (CAD) systems have shown potential to assist radiologists in analyzing medical images, the opaque nature of the best-performing CAD systems has raised concerns about their trustworthiness and interpretability. This paper proposes MT-BI-RADS, a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images. The approach offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy. Firstly, the proposed model outputs the BI-RADS categories used for BUS image analysis by radiologists. Secondly, the model employs multi-task learning to concurrently segment regions in images that correspond to tumors. Thirdly, the proposed approach outputs quantified contributions of each BI-RADS descriptor toward predicting the benign or malignant class using post-hoc explanations with Shapley Values.