Abstract:Record matching, the task of identifying records that correspond to the same real-world entities across databases, is critical for data integration in domains like healthcare, finance, and e-commerce. While traditional record matching models focus on optimizing accuracy, fairness issues, such as demographic disparities in model performance, have attracted increasing attention. Biased outcomes in record matching can result in unequal error rates across demographic groups, raising ethical and legal concerns. Existing research primarily addresses fairness at specific decision thresholds, using bias metrics like Demographic Parity (DP), Equal Opportunity (EO), and Equalized Odds (EOD) differences. However, threshold-specific metrics may overlook cumulative biases across varying thresholds. In this paper, we adapt fairness metrics traditionally applied in regression models to evaluate cumulative bias across all thresholds in record matching. We propose a novel post-processing calibration method, leveraging optimal transport theory and Wasserstein barycenters, to balance matching scores across demographic groups. This approach treats any matching model as a black box, making it applicable to a wide range of models without access to their training data. Our experiments demonstrate the effectiveness of the calibration method in reducing demographic parity difference in matching scores. To address limitations in reducing EOD and EO differences, we introduce a conditional calibration method, which empirically achieves fairness across widely used benchmarks and state-of-the-art matching methods. This work provides a comprehensive framework for fairness-aware record matching, setting the foundation for more equitable data integration processes.
Abstract:Entity Matching (EM) is crucial for identifying equivalent data entities across different sources, a task that becomes increasingly challenging with the growth and heterogeneity of data. Blocking techniques, which reduce the computational complexity of EM, play a vital role in making this process scalable. Despite advancements in blocking methods, the issue of fairness; where blocking may inadvertently favor certain demographic groups; has been largely overlooked. This study extends traditional blocking metrics to incorporate fairness, providing a framework for assessing bias in blocking techniques. Through experimental analysis, we evaluate the effectiveness and fairness of various blocking methods, offering insights into their potential biases. Our findings highlight the importance of considering fairness in EM, particularly in the blocking phase, to ensure equitable outcomes in data integration tasks.
Abstract:Entity Matching (EM) is a critical task in numerous fields, such as healthcare, finance, and public administration, as it identifies records that refer to the same entity within or across different databases. EM faces considerable challenges, particularly with false positives and negatives. These are typically addressed by generating matching scores and apply thresholds to balance false positives and negatives in various contexts. However, adjusting these thresholds can affect the fairness of the outcomes, a critical factor that remains largely overlooked in current fair EM research. The existing body of research on fair EM tends to concentrate on static thresholds, neglecting their critical impact on fairness. To address this, we introduce a new approach in EM using recent metrics for evaluating biases in score based binary classification, particularly through the lens of distributional parity. This approach enables the application of various bias metrics like equalized odds, equal opportunity, and demographic parity without depending on threshold settings. Our experiments with leading matching methods reveal potential biases, and by applying a calibration technique for EM scores using Wasserstein barycenters, we not only mitigate these biases but also preserve accuracy across real world datasets. This paper contributes to the field of fairness in data cleaning, especially within EM, which is a central task in data cleaning, by promoting a method for generating matching scores that reduce biases across different thresholds.
Abstract:Ensuring Conditional Independence (CI) constraints is pivotal for the development of fair and trustworthy machine learning models. In this paper, we introduce \sys, a framework that harnesses optimal transport theory for data repair under CI constraints. Optimal transport theory provides a rigorous framework for measuring the discrepancy between probability distributions, thereby ensuring control over data utility. We formulate the data repair problem concerning CIs as a Quadratically Constrained Linear Program (QCLP) and propose an alternating method for its solution. However, this approach faces scalability issues due to the computational cost associated with computing optimal transport distances, such as the Wasserstein distance. To overcome these scalability challenges, we reframe our problem as a regularized optimization problem, enabling us to develop an iterative algorithm inspired by Sinkhorn's matrix scaling algorithm, which efficiently addresses high-dimensional and large-scale data. Through extensive experiments, we demonstrate the efficacy and efficiency of our proposed methods, showcasing their practical utility in real-world data cleaning and preprocessing tasks. Furthermore, we provide comparisons with traditional approaches, highlighting the superiority of our techniques in terms of preserving data utility while ensuring adherence to the desired CI constraints.