Abstract:Growing exploitation of Machine Learning (ML) in safety-critical applications necessitates rigorous safety analysis. Hardware reliability assessment is a major concern with respect to measuring the level of safety. Quantifying the reliability of emerging ML models, including Deep Neural Networks (DNNs), is highly complex due to their enormous size in terms of the number of parameters and computations. Conventionally, Fault Injection (FI) is applied to perform a reliability measurement. However, performing FI on modern-day DNNs is prohibitively time-consuming if an acceptable confidence level is to be achieved. In order to speed up FI for large DNNs, statistical FI has been proposed. However, the run-time for the large DNN models is still considerably long. In this work, we introduce DeepVigor+, a scalable, fast and accurate semi-analytical method as an efficient alternative for reliability measurement in DNNs. DeepVigor+ implements a fault propagation analysis model and attempts to acquire Vulnerability Factors (VFs) as reliability metrics in an optimal way. The results indicate that DeepVigor+ obtains VFs for DNN models with an error less than 1\% and 14.9 up to 26.9 times fewer simulations than the best-known state-of-the-art statistical FI enabling an accurate reliability analysis for emerging DNNs within a few minutes.
Abstract:Deep Neural Networks (DNNs) are extensively employed in safety-critical applications where ensuring hardware reliability is a primary concern. To enhance the reliability of DNNs against hardware faults, activation restriction techniques significantly mitigate the fault effects at the DNN structure level, irrespective of accelerator architectures. State-of-the-art methods offer either neuron-wise or layer-wise clipping activation functions. They attempt to determine optimal clipping thresholds using heuristic and learning-based approaches. Layer-wise clipped activation functions cannot preserve DNNs resilience at high bit error rates. On the other hand, neuron-wise clipping activation functions introduce considerable memory overhead due to the addition of parameters, which increases their vulnerability to faults. Moreover, the heuristic-based optimization approach demands numerous fault injections during the search process, resulting in time-consuming threshold identification. On the other hand, learning-based techniques that train thresholds for entire layers concurrently often yield sub-optimal results. In this work, first, we demonstrate that it is not essential to incorporate neuron-wise activation functions throughout all layers in DNNs. Then, we propose a hybrid clipped activation function that integrates neuron-wise and layer-wise methods that apply neuron-wise clipping only in the last layer of DNNs. Additionally, to attain optimal thresholds in the clipping activation function, we introduce ProAct, a progressive training methodology. This approach iteratively trains the thresholds on a layer-by-layer basis, aiming to obtain optimal threshold values in each layer separately.
Abstract:Convolutional Neural Networks (CNNs) have become integral in safety-critical applications, thus raising concerns about their fault tolerance. Conventional hardware-dependent fault tolerance methods, such as Triple Modular Redundancy (TMR), are computationally expensive, imposing a remarkable overhead on CNNs. Whereas fault tolerance techniques can be applied either at the hardware level or at the model levels, the latter provides more flexibility without sacrificing generality. This paper introduces a model-level hardening approach for CNNs by integrating error correction directly into the neural networks. The approach is hardware-agnostic and does not require any changes to the underlying accelerator device. Analyzing the vulnerability of parameters enables the duplication of selective filters/neurons so that their output channels are effectively corrected with an efficient and robust correction layer. The proposed method demonstrates fault resilience nearly equivalent to TMR-based correction but with significantly reduced overhead. Nevertheless, there exists an inherent overhead to the baseline CNNs. To tackle this issue, a cost-effective parameter vulnerability based pruning technique is proposed that outperforms the conventional pruning method, yielding smaller networks with a negligible accuracy loss. Remarkably, the hardened pruned CNNs perform up to 24\% faster than the hardened un-pruned ones.
Abstract:The superior performance of Deep Neural Networks (DNNs) has led to their application in various aspects of human life. Safety-critical applications are no exception and impose rigorous reliability requirements on DNNs. Quantized Neural Networks (QNNs) have emerged to tackle the complexity of DNN accelerators, however, they are more prone to reliability issues. In this paper, a recent analytical resilience assessment method is adapted for QNNs to identify critical neurons based on a Neuron Vulnerability Factor (NVF). Thereafter, a novel method for splitting the critical neurons is proposed that enables the design of a Lightweight Correction Unit (LCU) in the accelerator without redesigning its computational part. The method is validated by experiments on different QNNs and datasets. The results demonstrate that the proposed method for correcting the faults has a twice smaller overhead than a selective Triple Modular Redundancy (TMR) while achieving a similar level of fault resiliency.
Abstract:Deep Learning, and in particular, Deep Neural Network (DNN) is nowadays widely used in many scenarios, including safety-critical applications such as autonomous driving. In this context, besides energy efficiency and performance, reliability plays a crucial role since a system failure can jeopardize human life. As with any other device, the reliability of hardware architectures running DNNs has to be evaluated, usually through costly fault injection campaigns. This paper explores the approximation and fault resiliency of DNN accelerators. We propose to use approximate (AxC) arithmetic circuits to agilely emulate errors in hardware without performing fault injection on the DNN. To allow fast evaluation of AxC DNN, we developed an efficient GPU-based simulation framework. Further, we propose a fine-grain analysis of fault resiliency by examining fault propagation and masking in networks
Abstract:Nowadays, the extensive exploitation of Deep Neural Networks (DNNs) in safety-critical applications raises new reliability concerns. In practice, methods for fault injection by emulation in hardware are efficient and widely used to study the resilience of DNN architectures for mitigating reliability issues already at the early design stages. However, the state-of-the-art methods for fault injection by emulation incur a spectrum of time-, design- and control-complexity problems. To overcome these issues, a novel resiliency assessment method called APPRAISER is proposed that applies functional approximation for a non-conventional purpose and employs approximate computing errors for its interest. By adopting this concept in the resiliency assessment domain, APPRAISER provides thousands of times speed-up in the assessment process, while keeping high accuracy of the analysis. In this paper, APPRAISER is validated by comparing it with state-of-the-art approaches for fault injection by emulation in FPGA. By this, the feasibility of the idea is demonstrated, and a new perspective in resiliency evaluation for DNNs is opened.
Abstract:Artificial Intelligence (AI) and, in particular, Machine Learning (ML) have emerged to be utilized in various applications due to their capability to learn how to solve complex problems. Over the last decade, rapid advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit from DHAs. Therefore, the reliability of DNNs is an essential subject of research. In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this regard, various reliability assessment methods have been proposed on a variety of platforms and applications. Hence, there is a need to summarize the state of the art to identify the gaps in the study of the reliability of DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods of DNNs to collect relevant research works as much as possible, present a categorization of them, and address the open challenges. Through this SLR, three kinds of methods for reliability assessment of DNNs are identified including Fault Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI, we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the advantages and disadvantages of the identified methods and address the open challenges in the research area.
Abstract:While the role of Deep Neural Networks (DNNs) in a wide range of safety-critical applications is expanding, emerging DNNs experience massive growth in terms of computation power. It raises the necessity of improving the reliability of DNN accelerators yet reducing the computational burden on the hardware platforms, i.e. reducing the energy consumption and execution time as well as increasing the efficiency of DNN accelerators. Therefore, the trade-off between hardware performance, i.e. area, power and delay, and the reliability of the DNN accelerator implementation becomes critical and requires tools for analysis. In this paper, we propose a framework DeepAxe for design space exploration for FPGA-based implementation of DNNs by considering the trilateral impact of applying functional approximation on accuracy, reliability and hardware performance. The framework enables selective approximation of reliability-critical DNNs, providing a set of Pareto-optimal DNN implementation design space points for the target resource utilization requirements. The design flow starts with a pre-trained network in Keras, uses an innovative high-level synthesis environment DeepHLS and results in a set of Pareto-optimal design space points as a guide for the designer. The framework is demonstrated in a case study of custom and state-of-the-art DNNs and datasets.
Abstract:Deep Neural Networks (DNNs) and their accelerators are being deployed ever more frequently in safety-critical applications leading to increasing reliability concerns. A traditional and accurate method for assessing DNNs' reliability has been resorting to fault injection, which, however, suffers from prohibitive time complexity. While analytical and hybrid fault injection-/analytical-based methods have been proposed, they are either inaccurate or specific to particular accelerator architectures. In this work, we propose a novel accurate, fine-grain, metric-oriented, and accelerator-agnostic method called DeepVigor that provides vulnerability value ranges for DNN neurons' outputs. An outcome of DeepVigor is an analytical model representing vulnerable and non-vulnerable ranges for each neuron that can be exploited to develop different techniques for improving DNNs' reliability. Moreover, DeepVigor provides reliability assessment metrics based on vulnerability factors for bits, neurons, and layers using the vulnerability ranges. The proposed method is not only faster than fault injection but also provides extensive and accurate information about the reliability of DNNs, independent from the accelerator. The experimental evaluations in the paper indicate that the proposed vulnerability ranges are 99.9% to 100% accurate even when evaluated on previously unseen test data. Also, it is shown that the obtained vulnerability factors represent the criticality of bits, neurons, and layers proficiently. DeepVigor is implemented in the PyTorch framework and validated on complex DNN benchmarks.