Abstract:Evolutionary Algorithms (EAs) employ random or simplistic selection methods, limiting their exploration of solution spaces and convergence to optimal solutions. The randomness in performing crossover or mutations may limit the model's ability to evolve efficiently. This paper introduces Preference-Aligned Individual Reciprocity (PAIR), a novel selection approach leveraging Large Language Models to emulate human-like mate selection, thereby introducing intelligence to the pairing process in EAs. PAIR prompts an LLM to evaluate individuals within a population based on genetic diversity, fitness level, and crossover compatibility, guiding more informed pairing decisions. We evaluated PAIR against a baseline method called LLM-driven EA (LMEA), published recently. Results indicate that PAIR significantly outperforms LMEA across various TSP instances, achieving lower optimality gaps and improved convergence. This performance is especially noticeable when combined with the flash thinking model, demonstrating increased population diversity to escape local optima. In general, PAIR provides a new strategy in the area of in-context learning for LLM-driven selection in EAs via sophisticated preference modelling, paving the way for improved solutions and further studies into LLM-guided optimization.
Abstract:Understanding how large language models (LLMs) grasp the historical context of concepts and their semantic evolution is essential in advancing artificial intelligence and linguistic studies. This study aims to evaluate the capabilities of various LLMs in capturing temporal dynamics of meaning, specifically how they interpret terms across different time periods. We analyze a diverse set of terms from multiple domains, using tailored prompts and measuring responses through both objective metrics (e.g., perplexity and word count) and subjective human expert evaluations. Our comparative analysis includes prominent models like ChatGPT, GPT-4, Claude, Bard, Gemini, and Llama. Findings reveal marked differences in each model's handling of historical context and semantic shifts, highlighting both strengths and limitations in temporal semantic understanding. These insights offer a foundation for refining LLMs to better address the evolving nature of language, with implications for historical text analysis, AI design, and applications in digital humanities.
Abstract:This paper presents a comprehensive examination of the impact of tokenization strategies and vocabulary sizes on the performance of Arabic language models in downstream natural language processing tasks. Our investigation focused on the effectiveness of four tokenizers across various tasks, including News Classification, Hate Speech Detection, Sentiment Analysis, and Natural Language Inference. Leveraging a diverse set of vocabulary sizes, we scrutinize the intricate interplay between tokenization approaches and model performance. The results reveal that Byte Pair Encoding (BPE) with Farasa outperforms other strategies in multiple tasks, underscoring the significance of morphological analysis in capturing the nuances of the Arabic language. However, challenges arise in sentiment analysis, where dialect specific segmentation issues impact model efficiency. Computational efficiency analysis demonstrates the stability of BPE with Farasa, suggesting its practical viability. Our study uncovers limited impacts of vocabulary size on model performance while keeping the model size unchanged. This is challenging the established beliefs about the relationship between vocabulary, model size, and downstream tasks, emphasizing the need for the study of models' size and their corresponding vocabulary size to generalize across domains and mitigate biases, particularly in dialect based datasets. Paper's recommendations include refining tokenization strategies to address dialect challenges, enhancing model robustness across diverse linguistic contexts, and expanding datasets to encompass the rich dialect based Arabic. This work not only advances our understanding of Arabic language models but also lays the foundation for responsible and ethical developments in natural language processing technologies tailored to the intricacies of the Arabic language.