Abstract:Evolutionary Algorithms (EAs) employ random or simplistic selection methods, limiting their exploration of solution spaces and convergence to optimal solutions. The randomness in performing crossover or mutations may limit the model's ability to evolve efficiently. This paper introduces Preference-Aligned Individual Reciprocity (PAIR), a novel selection approach leveraging Large Language Models to emulate human-like mate selection, thereby introducing intelligence to the pairing process in EAs. PAIR prompts an LLM to evaluate individuals within a population based on genetic diversity, fitness level, and crossover compatibility, guiding more informed pairing decisions. We evaluated PAIR against a baseline method called LLM-driven EA (LMEA), published recently. Results indicate that PAIR significantly outperforms LMEA across various TSP instances, achieving lower optimality gaps and improved convergence. This performance is especially noticeable when combined with the flash thinking model, demonstrating increased population diversity to escape local optima. In general, PAIR provides a new strategy in the area of in-context learning for LLM-driven selection in EAs via sophisticated preference modelling, paving the way for improved solutions and further studies into LLM-guided optimization.
Abstract:Understanding how large language models (LLMs) grasp the historical context of concepts and their semantic evolution is essential in advancing artificial intelligence and linguistic studies. This study aims to evaluate the capabilities of various LLMs in capturing temporal dynamics of meaning, specifically how they interpret terms across different time periods. We analyze a diverse set of terms from multiple domains, using tailored prompts and measuring responses through both objective metrics (e.g., perplexity and word count) and subjective human expert evaluations. Our comparative analysis includes prominent models like ChatGPT, GPT-4, Claude, Bard, Gemini, and Llama. Findings reveal marked differences in each model's handling of historical context and semantic shifts, highlighting both strengths and limitations in temporal semantic understanding. These insights offer a foundation for refining LLMs to better address the evolving nature of language, with implications for historical text analysis, AI design, and applications in digital humanities.