Abstract:Evolutionary Algorithms (EAs) employ random or simplistic selection methods, limiting their exploration of solution spaces and convergence to optimal solutions. The randomness in performing crossover or mutations may limit the model's ability to evolve efficiently. This paper introduces Preference-Aligned Individual Reciprocity (PAIR), a novel selection approach leveraging Large Language Models to emulate human-like mate selection, thereby introducing intelligence to the pairing process in EAs. PAIR prompts an LLM to evaluate individuals within a population based on genetic diversity, fitness level, and crossover compatibility, guiding more informed pairing decisions. We evaluated PAIR against a baseline method called LLM-driven EA (LMEA), published recently. Results indicate that PAIR significantly outperforms LMEA across various TSP instances, achieving lower optimality gaps and improved convergence. This performance is especially noticeable when combined with the flash thinking model, demonstrating increased population diversity to escape local optima. In general, PAIR provides a new strategy in the area of in-context learning for LLM-driven selection in EAs via sophisticated preference modelling, paving the way for improved solutions and further studies into LLM-guided optimization.
Abstract:Purpose: Recent disruptive events, such as COVID-19 and Russia-Ukraine conflict, had a significant impact of global supply chains. Digital supply chain twins have been proposed in order to provide decision makers with an effective and efficient tool to mitigate disruption impact. Methods: This paper introduces a hybrid deep learning approach for disruption detection within a cognitive digital supply chain twin framework to enhance supply chain resilience. The proposed disruption detection module utilises a deep autoencoder neural network combined with a one-class support vector machine algorithm. In addition, long-short term memory neural network models are developed to identify the disrupted echelon and predict time-to-recovery from the disruption effect. Results: The obtained information from the proposed approach will help decision-makers and supply chain practitioners make appropriate decisions aiming at minimizing negative impact of disruptive events based on real-time disruption detection data. The results demonstrate the trade-off between disruption detection model sensitivity, encountered delay in disruption detection, and false alarms. This approach has seldom been used in recent literature addressing this issue.