Abstract:This paper introduces GeoMorph, a novel geometric deep-learning framework designed for image registration of cortical surfaces. The registration process consists of two main steps. First, independent feature extraction is performed on each input surface using graph convolutions, generating low-dimensional feature representations that capture important cortical surface characteristics. Subsequently, features are registered in a deep-discrete manner to optimize the overlap of common structures across surfaces by learning displacements of a set of control points. To ensure smooth and biologically plausible deformations, we implement regularization through a deep conditional random field implemented with a recurrent neural network. Experimental results demonstrate that GeoMorph surpasses existing deep-learning methods by achieving improved alignment with smoother deformations. Furthermore, GeoMorph exhibits competitive performance compared to classical frameworks. Such versatility and robustness suggest strong potential for various neuroscience applications.
Abstract:Surface meshes are a favoured domain for representing structural and functional information on the human cortex, but their complex topology and geometry pose significant challenges for deep learning analysis. While Transformers have excelled as domain-agnostic architectures for sequence-to-sequence learning, notably for structures where the translation of the convolution operation is non-trivial, the quadratic cost of the self-attention operation remains an obstacle for many dense prediction tasks. Inspired by some of the latest advances in hierarchical modelling with vision transformers, we introduce the Multiscale Surface Vision Transformer (MS-SiT) as a backbone architecture for surface deep learning. The self-attention mechanism is applied within local-mesh-windows to allow for high-resolution sampling of the underlying data, while a shifted-window strategy improves the sharing of information between windows. Neighbouring patches are successively merged, allowing the MS-SiT to learn hierarchical representations suitable for any prediction task. Results demonstrate that the MS-SiT outperforms existing surface deep learning methods for neonatal phenotyping prediction tasks using the Developing Human Connectome Project (dHCP) dataset. Furthermore, building the MS-SiT backbone into a U-shaped architecture for surface segmentation demonstrates competitive results on cortical parcellation using the UK Biobank (UKB) and manually-annotated MindBoggle datasets. Code and trained models are publicly available at https://github.com/metrics-lab/surface-vision-transformers .
Abstract:Cortical surface registration is a fundamental tool for neuroimaging analysis that has been shown to improve the alignment of functional regions relative to volumetric approaches. Classically, image registration is performed by optimizing a complex objective similarity function, leading to long run times. This contributes to a convention for aligning all data to a global average reference frame that poorly reflects the underlying cortical heterogeneity. In this paper, we propose a novel unsupervised learning-based framework that converts registration to a multi-label classification problem, where each point in a low-resolution control grid deforms to one of fixed, finite number of endpoints. This is learned using a spherical geometric deep learning architecture, in an end-to-end unsupervised way, with regularization imposed using a deep Conditional Random Field (CRF). Experiments show that our proposed framework performs competitively, in terms of similarity and areal distortion, relative to the most popular classical surface registration algorithms and generates smoother deformations than other learning-based surface registration methods, even in subjects with atypical cortical morphology.