Abstract:Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, when considering larger models that do not fit on a single accelerate, the exchange of gradient information and the integration of DeMo needs to be reconsidered. Here, we propose employing a hybrid strategy, FlexDeMo, whereby nodes fully synchronize locally between different GPUs and inter-node communication is improved through only using the fast-moving components. This effectively combines previous hybrid sharding strategies with the advantages of decoupled momentum. Our experimental results show that FlexDeMo is on par with AdamW in terms of validation loss, demonstrating its viability.