Abstract:Expensive multi-objective optimization problems (EMOPs) are common in real-world scenarios where evaluating objective functions is costly and involves extensive computations or physical experiments. Current Pareto set learning methods for such problems often rely on surrogate models like Gaussian processes to approximate the objective functions. These surrogate models can become fragmented, resulting in numerous small uncertain regions between explored solutions. When using acquisition functions such as the Lower Confidence Bound (LCB), these uncertain regions can turn into pseudo-local optima, complicating the search for globally optimal solutions. To address these challenges, we propose a novel approach called SVH-PSL, which integrates Stein Variational Gradient Descent (SVGD) with Hypernetworks for efficient Pareto set learning. Our method addresses the issues of fragmented surrogate models and pseudo-local optima by collectively moving particles in a manner that smooths out the solution space. The particles interact with each other through a kernel function, which helps maintain diversity and encourages the exploration of underexplored regions. This kernel-based interaction prevents particles from clustering around pseudo-local optima and promotes convergence towards globally optimal solutions. Our approach aims to establish robust relationships between trade-off reference vectors and their corresponding true Pareto solutions, overcoming the limitations of existing methods. Through extensive experiments across both synthetic and real-world MOO benchmarks, we demonstrate that SVH-PSL significantly improves the quality of the learned Pareto set, offering a promising solution for expensive multi-objective optimization problems.
Abstract:Accurate pain assessment is crucial in healthcare for effective diagnosis and treatment; however, traditional methods relying on self-reporting are inadequate for populations unable to communicate their pain. Cutting-edge AI is promising for supporting clinicians in pain recognition using facial video data. In this paper, we enhance pain recognition by employing facial video analysis within a Transformer-based deep learning model. By combining a powerful Masked Autoencoder with a Transformers-based classifier, our model effectively captures pain level indicators through both expressions and micro-expressions. We conducted our experiment on the AI4Pain dataset, which produced promising results that pave the way for innovative healthcare solutions that are both comprehensive and objective.
Abstract:The creation of listener facial responses aims to simulate interactive communication feedback from a listener during a face-to-face conversation. Our goal is to generate believable videos of listeners' heads that respond authentically to a single speaker by a sequence-to-sequence model with an combination of WaveNet and Long short-term memory network. Our approach focuses on capturing the subtle nuances of listener feedback, ensuring the preservation of individual listener identity while expressing appropriate attitudes and viewpoints. Experiment results show that our method surpasses the baseline models on ViCo benchmark Dataset.