Abstract:Cooperative path planning is gaining its importance due to the increasing demand on using multiple unmanned aerial vehicles (UAVs) for complex missions. This work addresses the problem by introducing a new algorithm named MultiRRT that extends the rapidly exploring random tree (RRT) to generate paths for a group of UAVs to reach multiple goal locations at the same time. We first derive the dynamics constraint of the UAV and include it in the problem formulation. MultiRRT is then developed, taking into account the cooperative requirements and safe constraints during its path-searching process. The algorithm features two new mechanisms, node reduction and Bezier interpolation, to ensure the feasibility and optimality of the paths generated. Importantly, the interpolated paths are proven to meet the safety and dynamics constraints imposed by obstacles and the UAVs. A number of simulations, comparisons, and experiments have been conducted to evaluate the performance of the proposed approach. The results show that MultiRRT can generate collision-free paths for multiple UAVs to reach their goals with better scores in path length and smoothness metrics than state-of-the-art RRT variants including Theta-RRT, FN-RRT, RRT*, and RRT*-Smart. The generated paths are also tested in practical flights with real UAVs to evaluate their validity for cooperative tasks. The source code of the algorithm is available at https://github.com/duynamrcv/multi-target_RRT
Abstract:Breast Ultrasound plays a vital role in cancer diagnosis as a non-invasive approach with cost-effective. In recent years, with the development of deep learning, many CNN-based approaches have been widely researched in both tumor localization and cancer classification tasks. Even though previous single models achieved great performance in both tasks, these methods have some limitations in inference time, GPU requirement, and separate fine-tuning for each model. In this study, we aim to redesign and build end-to-end multi-task architecture to conduct both segmentation and classification. With our proposed approach, we achieved outstanding performance and time efficiency, with 79.8% and 86.4% in DeepLabV3+ architecture in the segmentation task.
Abstract:This paper investigates the impact of breast density distribution on the generalization performance of deep-learning models on mammography images using the VinDr-Mammo dataset. We explore the use of domain adaptation techniques, specifically Domain Adaptive Object Detection (DAOD) with the Noise Latent Transferability Exploration (NLTE) framework, to improve model performance across breast densities under noisy labeling circumstances. We propose a robust augmentation framework to bridge the domain gap between the source and target inside a dataset. Our results show that DAOD-based methods, along with the proposed augmentation framework, can improve the generalization performance of deep-learning models (+5% overall mAP improvement approximately in our experimental results compared to commonly used detection models). This paper highlights the importance of domain adaptation techniques in medical imaging, particularly in the context of breast density distribution, which is critical in mammography.