Abstract:Accurate liver segmentation in multi-phase MRI is vital for liver fibrosis assessment, yet labeled data is often scarce and unevenly distributed across imaging modalities and vendor systems. We propose a label-efficient segmentation approach that promotes cross-modality generalization under real-world conditions, where GED4 hepatobiliary-phase annotations are limited, non-contrast sequences (T1WI, T2WI, DWI) are unlabeled, and spatial misalignment and missing phases are common. Our method integrates a foundation-scale 3D segmentation backbone adapted via fine-tuning, co-training with cross pseudo supervision to leverage unlabeled volumes, and a standardized preprocessing pipeline. Without requiring spatial registration, the model learns to generalize across MRI phases and vendors, demonstrating robust segmentation performance in both labeled and unlabeled domains. Our results exhibit the effectiveness of our proposed label-efficient baseline for liver segmentation in multi-phase, multi-vendor MRI and highlight the potential of combining foundation model adaptation with co-training for real-world clinical imaging tasks.
Abstract:Breast Ultrasound plays a vital role in cancer diagnosis as a non-invasive approach with cost-effective. In recent years, with the development of deep learning, many CNN-based approaches have been widely researched in both tumor localization and cancer classification tasks. Even though previous single models achieved great performance in both tasks, these methods have some limitations in inference time, GPU requirement, and separate fine-tuning for each model. In this study, we aim to redesign and build end-to-end multi-task architecture to conduct both segmentation and classification. With our proposed approach, we achieved outstanding performance and time efficiency, with 79.8% and 86.4% in DeepLabV3+ architecture in the segmentation task.