Abstract:Graph learning is naturally well suited for use in planning due to its ability to exploit relational structures exhibited in planning domains and to take as input planning instances with arbitrary number of objects. In this paper, we study the usage of graph learning for planning thus far by studying the theoretical and empirical effects on learning and planning performance of (1) graph representations of planning tasks, (2) graph learning architectures, and (3) optimisation formulations for learning. Our studies accumulate in the GOOSE framework which learns domain knowledge from small planning tasks in order to scale up to much larger planning tasks. In this paper, we also highlight and propose the 5 open challenges in the general Learning for Planning field that we believe need to be addressed for advancing the state-of-the-art.
Abstract:As a newly emerged asset class, cryptocurrency is evidently more volatile compared to the traditional equity markets. Due to its mostly unregulated nature, and often low liquidity, the price of crypto assets can sustain a significant change within minutes that in turn might result in considerable losses. In this paper, we employ an approach for encoding market information into images and making predictions of short-term realized volatility by employing Convolutional Neural Networks. We then compare the performance of the proposed encoding and corresponding model with other benchmark models. The experimental results demonstrate that this representation of market data with a Convolutional Neural Network as a predictive model has the potential to better capture the market dynamics and a better volatility prediction.