Abstract:Retrieval-Augmented Large Language Models (LLMs), which integrate external knowledge into LLMs, have shown remarkable performance in various medical domains, including clinical diagnosis. However, existing RAG methods struggle to effectively assess task difficulty to make retrieval decisions, thereby failing to meet the clinical requirements for balancing efficiency and accuracy. So in this paper, we propose FIND (\textbf{F}ine-grained \textbf{In}formation \textbf{D}ensity Guided Adaptive RAG), a novel framework that improves the reliability of RAG in disease diagnosis scenarios. FIND incorporates a fine-grained adaptive control module to determine whether retrieval is necessary based on the information density of the input. By optimizing the retrieval process and implementing a knowledge filtering module, FIND ensures that the retrieval is better suited to clinical scenarios. Experiments on three Chinese electronic medical record datasets demonstrate that FIND significantly outperforms various baseline methods, highlighting its effectiveness in clinical diagnosis tasks.
Abstract:Electronic Medical Records (EMRs), while integral to modern healthcare, present challenges for clinical reasoning and diagnosis due to their complexity and information redundancy. To address this, we proposed medIKAL (Integrating Knowledge Graphs as Assistants of LLMs), a framework that combines Large Language Models (LLMs) with knowledge graphs (KGs) to enhance diagnostic capabilities. medIKAL assigns weighted importance to entities in medical records based on their type, enabling precise localization of candidate diseases within KGs. It innovatively employs a residual network-like approach, allowing initial diagnosis by the LLM to be merged into KG search results. Through a path-based reranking algorithm and a fill-in-the-blank style prompt template, it further refined the diagnostic process. We validated medIKAL's effectiveness through extensive experiments on a newly introduced open-sourced Chinese EMR dataset, demonstrating its potential to improve clinical diagnosis in real-world settings.