Abstract:Mispronunciation Detection and Diagnosis (MDD) systems, leveraging Automatic Speech Recognition (ASR), face two main challenges in Mandarin Chinese: 1) The two-stage models create an information gap between the phoneme or tone classification stage and the MDD stage. 2) The scarcity of Mandarin MDD datasets limits model training. In this paper, we introduce a stateless RNN-T model for Mandarin MDD, utilizing HuBERT features with pitch embedding through a Pitch Fusion Block. Our model, trained solely on native speaker data, shows a 3% improvement in Phone Error Rate and a 7% increase in False Acceptance Rate over the state-of-the-art baseline in non-native scenarios
Abstract:Automatic Pronunciation Assessment (APA) is vital for computer-assisted language learning. Prior methods rely on annotated speech-text data to train Automatic Speech Recognition (ASR) models or speech-score data to train regression models. In this work, we propose a novel zero-shot APA method based on the pre-trained acoustic model, HuBERT. Our method involves encoding speech input and corrupting them via a masking module. We then employ the Transformer encoder and apply k-means clustering to obtain token sequences. Finally, a scoring module is designed to measure the number of wrongly recovered tokens. Experimental results on speechocean762 demonstrate that the proposed method achieves comparable performance to supervised regression baselines and outperforms non-regression baselines in terms of Pearson Correlation Coefficient (PCC). Additionally, we analyze how masking strategies affect the performance of APA.