Abstract:While significant advancements have been made in music generation and differentiable sound synthesis within machine learning and computer audition, the simulation of instrument vibration guided by physical laws has been underexplored. To address this gap, we introduce a novel model for simulating the spatio-temporal motion of nonlinear strings, integrating modal synthesis and spectral modeling within a neural network framework. Our model leverages physical properties and fundamental frequencies as inputs, outputting string states across time and space that solve the partial differential equation characterizing the nonlinear string. Empirical evaluations demonstrate that the proposed architecture achieves superior accuracy in string motion simulation compared to existing baseline architectures. The code and demo are available online.
Abstract:This paper introduces a nonlinear string sound synthesizer, based on a finite difference simulation of the dynamic behavior of strings under various excitations. The presented synthesizer features a versatile string simulation engine capable of stochastic parameterization, encompassing fundamental frequency modulation, stiffness, tension, frequency-dependent loss, and excitation control. This open-source physical model simulator not only benefits the audio signal processing community but also contributes to the burgeoning field of neural network-based audio synthesis by serving as a novel dataset construction tool. Implemented in PyTorch, this synthesizer offers flexibility, facilitating both CPU and GPU utilization, thereby enhancing its applicability as a simulator. GPU utilization expedites computation by parallelizing operations across spatial and batch dimensions, further enhancing its utility as a data generator.