Abstract:Conventional endoscopes comprise a bundle of optical fibers, associating one fiber for each pixel in the image. In principle, this can be reduced to a single multimode optical fiber (MMF), the width of a human hair, with one fiber spatial-mode per image pixel. However, images transmitted through a MMF emerge as unrecognisable speckle patterns due to dispersion and coupling between the spatial modes of the fiber. Furthermore, speckle patterns change as the fiber undergoes bending, making the use of MMFs in flexible imaging applications even more complicated. In this paper, we propose a real-time imaging system using flexible MMFs, but which is robust to bending. Our approach does not require access or feedback signal from the distal end of the fiber during imaging. We leverage a variational autoencoder (VAE) to reconstruct and classify images from the speckles and show that these images can still be recovered when the bend configuration of the fiber is changed to one that was not part of the training set. We utilize a MMF $300$ mm long with a 50 $\mu$m core for imaging $10\times 10$ cm objects placed approximately at $20$ cm from the fiber and the system can deal with a change in fiber bend of 50$^\circ$ and range of movement of 8 cm.
Abstract:As an alternative to conventional multi-pixel cameras, single-pixel cameras enable images to be recorded using a single detector that measures the correlations between the scene and a set of patterns. However, to fully sample a scene in this way requires at least the same number of correlation measurements as there are pixels in the reconstructed image. Therefore single-pixel imaging systems typically exhibit low frame-rates. To mitigate this, a range of compressive sensing techniques have been developed which rely on a priori knowledge of the scene to reconstruct images from an under-sampled set of measurements. In this work we take a different approach and adopt a strategy inspired by the foveated vision systems found in the animal kingdom - a framework that exploits the spatio-temporal redundancy present in many dynamic scenes. In our single-pixel imaging system a high-resolution foveal region follows motion within the scene, but unlike a simple zoom, every frame delivers new spatial information from across the entire field-of-view. Using this approach we demonstrate a four-fold reduction in the time taken to record the detail of rapidly evolving features, whilst simultaneously accumulating detail of more slowly evolving regions over several consecutive frames. This tiered super-sampling technique enables the reconstruction of video streams in which both the resolution and the effective exposure-time spatially vary and adapt dynamically in response to the evolution of the scene. The methods described here can complement existing compressive sensing approaches and may be applied to enhance a variety of computational imagers that rely on sequential correlation measurements.