Abstract:Power grids are moving towards 100% renewable energy source bulk power grids, and the overall dynamics of power system operations and electricity markets are changing. The electricity markets are not only dispatching resources economically but also taking into account various controllable actions like renewable curtailment, transmission congestion mitigation, and energy storage optimization to ensure grid reliability. As a result, price formations in electricity markets have become quite complex. Traditional root cause analysis and statistical approaches are rendered inapplicable to analyze and infer the main drivers behind price formation in the modern grid and markets with variable renewable energy (VRE). In this paper, we propose a machine learning-based analysis framework to deconstruct the primary drivers for price spike events in modern electricity markets with high renewable energy. The outcomes can be utilized for various critical aspects of market design, renewable dispatch and curtailment, operations, and cyber-security applications. The framework can be applied to any ISO or market data; however, in this paper, it is applied to open-source publicly available datasets from California Independent System Operator (CAISO) and ISO New England (ISO-NE).
Abstract:Collisions, crashes, and other incidents on road networks, if left unmitigated, can potentially cause cascading failures that can affect large parts of the system. Timely handling such extreme congestion scenarios is imperative to reduce emissions, enhance productivity, and improve the quality of urban living. In this work, we propose a Deep Reinforcement Learning (DRL) approach to reduce traffic congestion on multi-lane freeways during extreme congestion. The agent is trained to learn adaptive detouring strategies for congested freeway traffic such that the freeway lanes along with the local arterial network in proximity are utilized optimally, with rewards being congestion reduction and traffic speed improvement. The experimental setup is a 2.6-mile-long 4-lane freeway stretch in Shoreline, Washington, USA with two exits and associated arterial roads simulated on a microscopic and continuous multi-modal traffic simulator SUMO (Simulation of Urban MObility) while using parameterized traffic profiles generated using real-world traffic data. Our analysis indicates that DRL-based controllers can improve average traffic speed by 21\% when compared to no-action during steep congestion. The study further discusses the trade-offs involved in the choice of reward functions, the impact of human compliance on agent performance, and the feasibility of knowledge transfer from one agent to other to address data sparsity and scaling issues.
Abstract:Disadvantaged communities (DAC), as defined by the Justice40 initiative of the Department of Energy (DOE), USA, identifies census tracts across the USA to determine where benefits of climate and energy investments are or are not currently accruing. The DAC status not only helps in determining the eligibility for future Justice40-related investments but is also critical for exploring ways to achieve equitable distribution of resources. However, designing inclusive and equitable strategies not just requires a good understanding of current demographics, but also a deeper analysis of the transformations that happened in those demographics over the years. In this paper, machine learning (ML) models are trained on publicly available census data from recent years to classify the DAC status at the census tracts level and then the trained model is used to classify DAC status for historical years. A detailed analysis of the feature and model selection along with the evolution of disadvantaged communities between 2013 and 2018 is presented in this study.