Abstract:We consider the problem of sampling from a target distribution which is \emph{not necessarily logconcave}. Non-asymptotic analysis results are established in a suitable Wasserstein-type distance of the Stochastic Gradient Langevin Dynamics (SGLD) algorithm, when the gradient is driven by even \emph{dependent} data streams. Our estimates are sharper and \emph{uniform} in the number of iterations, in contrast to those in previous studies.