Abstract:We study learning problems on correlated stochastic block models with two balanced communities. Our main result gives the first efficient algorithm for graph matching in this setting. In the most interesting regime where the average degree is logarithmic in the number of vertices, this algorithm correctly matches all but a vanishing fraction of vertices with high probability, whenever the edge correlation parameter $s$ satisfies $s^2 > \alpha \approx 0.338$, where $\alpha$ is Otter's tree-counting constant. Moreover, we extend this to an efficient algorithm for exact graph matching whenever this is information-theoretically possible, positively resolving an open problem of R\'acz and Sridhar (NeurIPS 2021). Our algorithm generalizes the recent breakthrough work of Mao, Wu, Xu, and Yu (STOC 2023), which is based on centered subgraph counts of a large family of trees termed chandeliers. A major technical challenge that we overcome is dealing with the additional estimation errors that are necessarily present due to the fact that, in relevant parameter regimes, the latent community partition cannot be exactly recovered from a single graph. As an application of our results, we give an efficient algorithm for exact community recovery using multiple correlated graphs in parameter regimes where it is information-theoretically impossible to do so using just a single graph.
Abstract:We study the problem of learning latent community structure from multiple correlated networks, focusing on edge-correlated stochastic block models with two balanced communities. Recent work of Gaudio, R\'acz, and Sridhar (COLT 2022) determined the precise information-theoretic threshold for exact community recovery using two correlated graphs; in particular, this showcased the subtle interplay between community recovery and graph matching. Here we study the natural setting of more than two graphs. The main challenge lies in understanding how to aggregate information across several graphs when none of the pairwise latent vertex correspondences can be exactly recovered. Our main result derives the precise information-theoretic threshold for exact community recovery using any constant number of correlated graphs, answering a question of Gaudio, R\'acz, and Sridhar (COLT 2022). In particular, for every $K \geq 3$ we uncover and characterize a region of the parameter space where exact community recovery is possible using $K$ correlated graphs, even though (1) this is information-theoretically impossible using any $K-1$ of them and (2) none of the latent matchings can be exactly recovered.
Abstract:We consider the task of estimating the latent vertex correspondence between two edge-correlated random graphs with generic, inhomogeneous structure. We study the so-called \emph{$k$-core estimator}, which outputs a vertex correspondence that induces a large, common subgraph of both graphs which has minimum degree at least $k$. We derive sufficient conditions under which the $k$-core estimator exactly or partially recovers the latent vertex correspondence. Finally, we specialize our general framework to derive new results on exact and partial recovery in correlated stochastic block models, correlated Chung-Lu graphs, and correlated random geometric graphs.