Abstract:With diet and nutrition apps reaching 1.4 billion users in 2022 [1], it's no surprise that health apps like MyFitnessPal, Noom, and Calorie Counter, are surging in popularity. However, one major setback [2] of nearly all nutrition applications is that users must enter food data manually, which is time-consuming and tedious. Thus, there has been an increasing demand for applications that can accurately identify food items, analyze their nutritional content, and offer dietary recommendations in real-time. This paper introduces a comprehensive system that combines advanced computer vision techniques with nutrition analysis, implemented in a versatile mobile and web application. The system is divided into three key components: 1) food detection using the YOLOv8 model, 2) nutrient analysis via the Edamam Nutrition Analysis API, and 3) personalized meal recommendations using the Edamam Meal Planning and Recipe Search APIs. Designed for both mobile and web platforms, the application ensures fast processing times with an intuitive user interface, with features such as data visualizations using Chart.js, a login system, and personalized settings for dietary preferences, allergies, and cuisine choices. Preliminary results showcase the system's effectiveness, making it a valuable tool for users to make informed dietary decisions.
Abstract:Due to the modern relevance of blockchain technology, smart contracts present both substantial risks and benefits. Vulnerabilities within them can trigger a cascade of consequences, resulting in significant losses. Many current papers primarily focus on classifying smart contracts for malicious intent, often relying on limited contract characteristics, such as bytecode or opcode. This paper proposes a novel, two-layered framework: 1) classifying and 2) directly repairing malicious contracts. Slither's vulnerability report is combined with source code and passed through a pre-trained RandomForestClassifier (RFC) and Large Language Models (LLMs), classifying and repairing each suggested vulnerability. Experiments demonstrate the effectiveness of fine-tuned and prompt-engineered LLMs. The smart contract repair models, built from pre-trained GPT-3.5-Turbo and fine-tuned Llama-2-7B models, reduced the overall vulnerability count by 97.5% and 96.7% respectively. A manual inspection of repaired contracts shows that all retain functionality, indicating that the proposed method is appropriate for automatic batch classification and repair of vulnerabilities in smart contracts.